\(\overline{abba}=1000a+100b+10b+a\\ =1001a+110b\\ =11.\left(91a\right)+11\left(10b\right)\\ V\text{ậy}\overline{abba}chiah\text{ết}cho11\)
ta có abbc=1000a+100b+10b+a=(1000a+a)+(100b+10b)=a(1000+1)+b(100+10)
=1001a+110b
ta có 1001 chia hết cho 11 =>1001a chia hết cho 11
110 cia hết cho 11=>110b chia hết cho 11
suy ra 1001a+110b chia hết cho 11 hay abba chia hết cho 11
hay 11 là ước của số có dạng abba. (đpcm)
Ta có:
\(\overline{abba}=1001\overline{a}+110\overline{b}\)
\(=11(91a+10b) \vdots11\)
\(\Rightarrow\overline{abba}⋮11\)
Vậy 11 là ước của số có dạng \(\overline{abba}\)