B1:Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
\(\Rightarrow\widehat{A}+\widehat{B}=360-\widehat{C}-\widehat{D}=360-120-100=140^0\)
Ta lại có : \(\widehat{A}-\widehat{B}=40^0\)
\(\Rightarrow\widehat{A}=40+\widehat{B}\)
Khi đó : \(\widehat{A}+\widehat{B}=140\)
\(\Rightarrow40+\widehat{B}+\widehat{B}=140\)
\(\Rightarrow2\widehat{B}=100^0\)
\(\Rightarrow\widehat{B}=50^0\)
\(\Rightarrow\)\(\widehat{A}=40+50=90^0\)
B2: Ta có : \(\widehat{M}:\widehat{N}:\widehat{P}:\widehat{Q}=1:3:4:7\)
\(\Rightarrow\frac{\widehat{M}}{1}=\frac{\widehat{N}}{3}=\frac{\widehat{P}}{4}=\frac{\widehat{Q}}{7}\)Và \(\widehat{M}+\widehat{N}+\widehat{P}+\widehat{Q}=360^0\)
Áp dụng dãy tỉ số = nhau ta có :
\(\frac{\widehat{M}}{1}=\widehat{\frac{N}{3}}=\widehat{\frac{P}{4}}=\widehat{\frac{Q}{7}}=\frac{\widehat{M}+\widehat{N}+\widehat{P}+\widehat{Q}}{1+3+4+7}=\frac{360}{15}=24\)
Khi đó : \(\widehat{M}=1.24=24^0\)
\(\widehat{N}=3.24=72^0\)
\(\widehat{P}=4.24=96^0\)
\(\widehat{Q}=24.7=168^0\)