Cho tam giác ABC nhọn có ba đỉnh thuộc đường tròn (O). Gọi H là trực tâm của tam giác
ABC. Vẽ đường kính AD.
a) Tứ giác BHCK là hình gì?
b) Gọi I là trung điểm của BC. Chứng minh AH=2.OI
c) Gọi G là trọng tâm của tam giác ABC. Chứng minh 3 điểm H, G, O thẳng hàng và GH=2.GO
d) So sánh diện tích hai tam giác AHG và tam giác AOG.
Cho tam nhọn ABC có trực tâm H và nội tiếp đường tròn (O) đường kính AD = 2R.
a) Chứng minh tứ giác BHCD là hình hình hành.
b) Kẻ OI vuông góc với BC tại I. Chứng minh I, H, D thẳng hàng.
c) Chứng minh AH = 2OI d)\(AH^2+BC^2\)=4\(R^2\)
cho tam giác ABC nội tiệp (o). Kẽ các đường cao AD, BE, CF của tam giác (H là trực tâm) kẽ đường kính AOM
a) ABM=90
b) cm tứ giác BHCM là hình bình hành
c)gọi I là giao điểm của HM và BC Cm OI vuông góc với BC và AH= 2OI
d) CM DB.DC=AD.HD
Cho tam giác nhọn ABC nội tiếp đường tròn (O) (AB<AC).Gọi H là trực tâm, gọi M là giao điểm của AH với đường tròn (O). Vẽ đường kính AK của (O)
a)Chứng minh tứ giác BHCK là hình bình hành
ai giúp mik vs
Cho đường thẳng ( O,R) và dây cung BC cố định ( BC <2R). Điểm A di động trên đường tròn (O) sao cho tam giác ABC có 2 góc nhọn và AB<AC. Vẽ đường cao CD của tam giác ABC và đường kính AM. Hạ CE vuông góc AM tại E. Gọi H là trực tâm của tam giác ABC
1/ Chứng minh tứ giác ADEC nội tiếp
2/ Chứng minh góc ABH = góc DEA và DE.BC=DC.BM
Cho tam giác ABC nhọn (AB< AC) nội tiếp đường tròn ( O;R) .Đường cao AI ( I thuộc BC) cắt đường tròn (O) tại E . Kẻ đường kính AF. Gọi H là trực tâm của tam giác ABC . Chứng minh IH=IE
Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn ( O, R) , AD là đường cao của tam giác ABC và AM là đường kính của đường tròn (O), gọi E là hình chiếu của B trên AM. a) CMR : góc ACM = 90° và BAC=MAC b) CMR : Tứ giác ABDE nội tiếp c) CM : DE // MC
cho tam giác ABC có đỉnh C nằm ngoài đường tròn(O) tâm O đường kính AB. Biết cạnh CA cắt đường tròn (O) tại điểm D khác , cạnh CB cắt đường tròn (O) tại điểm E khác B. Gọi H là giao điểm của AE và BD.
1/ cm tam giác ABD là tam giác vuông. Cm CH vuông góc với AB.
2/ Gọi F là trung điểm của đoạn CH. Cm DF là tiếp tuyến của đường tròn (O).