Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D( D khác B, C). Trên tia đối của tia CB, lấy điểm E sao cho CE = BD. Đường vuông góc với BC kẻ từ D cắt BA tại M. Đường vuông góc với BC kẻ từ E cắt AC tại N. MN cắt BC tại I.
a) Chứng minh rằng DM = EN
b) Chứng minh IM = IN; BC < MN.
c) Gọi O là giao điểm của đường phân giác của góc A với MN tại I. Chứng minh rằng .
1.Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy D, trên tia đối của tia CB lấy E sao cho BD=CE. Từ D kẻ đường vuông góc với BC cắt AB ở M, từ E kẻ đường vuông góc với BC cắt AC ở N.
a)Chứng minh MD=NE
b) MN và NE cắt DE ở I
c) Từ C kẻ đường vuông góc với AC , từ B kẻ đường vuông góc với AB và chúng cắt nhau tại O. Chứng minh AO là đường trung trực của BC
Bài 1 : Tam giác ABC cân tại A; D thuộc cạnh BC; E thuộc tia đối của tia CB sao cho BD = CE. Kẻ DM vuông góc với BC ( M thuộc AB); EN vuông góc với BC (N thuộc AC)
a) Chứng minh : BM = CN
b) Chứng minh BC cắt MN tại trung điểm I của đoạn thẳng MN
c) Chứng minh đường trung trực của đoạn thẳng MN luôn đi qua 1 điểm cố định khi D di động trên cạnh BC
Cho tam giác cân ABC, AB=AC. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. Chứng minh rằng:
a) DM=EN.
b) Đường thẳng BC cắt MN tại điểm I là trung điểm của MN.
c) Đường thẳng vuông góc với MN tại I luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC
Cho tam giác abc cân tại a. Trên tia đối của bc lấy điểm d, trên tia đối của cb lấy điểm e sao cho bd=ce.
a. CM: tam giác ade ;à tam giác cân
b. Kẻ bh vuông góc với ad (h thuộc ad), kẻ ck vuông góc với ae (k thuộc ae). CML bh=ck và hk song song với bc
c. Gội là giao điểm của bh và ck. Tam giác obc là tam giác gì? ví sao?
d. M là trung điểm của bc. CMR: am, bh, ck đồng quy
Cho tam giác cân ABC, AB = AC. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=BE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC thứ tự tại M và N .Chứng minh:
a) DM=ED
b) BC cắt MN tại trung điểm I của MN.
c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC.
bài 2 : Cho tam giác ABC có góc A=90 độ, vẽ tia phân giác BD và Ce chứng cắt nhau tại O.
a. tính số đo góc BOC
b. Trên BC lấy ddieeemr M và N sao cho BM=BA, CN=CA. Chứng minh EN//Dm
c.Gọi I là giao của BD và AN chứng minh tam giác AIM cân
Bài 1: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE.
a. C/m tam giác ADE cân
b. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đương thẳng BH và CK cắt nhau tại O. C/m tam giác OBC cân
c. C/m OA là tia phân giác của góc BOC