Bài 3:
Xét hình thang ABCD có MN//AB//CD
nên BN/NC=AM/MD=2/3
=>BN/2=NC/3=(BN+NC)/(2+3)=7/5=1,4
=>BN=2,8cm; CN=4,2cm
Bài 3:
Xét hình thang ABCD có MN//AB//CD
nên BN/NC=AM/MD=2/3
=>BN/2=NC/3=(BN+NC)/(2+3)=7/5=1,4
=>BN=2,8cm; CN=4,2cm
Hình thang ABCD (AB//CD) có hai đường chéo cắt nhau tại O và song song với đáy AB cắt các cạnh bên AD,BC theo thứ tự M và N
a. Chứng minh rằng OM=ON
b. Chứng minh rằng \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\)
Cho hình thang cân ABCD (AD // BC). Đường cao BE cắt đường chéo AC tại F. Hai đường thẳng AB và CD cắt nhau tại M.
Tính độ dài đoạn BM, biết AB = 20cm và \(\dfrac{AF}{FC}\)=\(\dfrac{2}{3}\)Cho hình thang ABCD (AB//CD), đường thẳng d//AB cắt AD, BD, AC, BC lần lượt tại M, N, P, G. Chứng minh:
MN=PQ
\(\dfrac{AE}{AB}=\dfrac{CD}{CB}\)
\(\dfrac{AF}{AC}=\dfrac{BD}{BC}\)
1. Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD/AB = AE/AC
a) Chứng minh: AD/BD = AE/EC
b) Tính BC biết AD = 2cm, BD = 1cm, DE = 3cm.
2. Cho tam giác ABC có AB = 11cm. Lấy D trên đoạn AB sao cho AD = 4cm. Qua D kẻ DE // BC (E thuộc AC).
Biết EC-AE = 1,5cm, BC = 8cm.
a) Tính tỉ số AE: EC
b) Tính các đoạn thẳng AE, DE?
3.Cho hình thang ABCD (AB//CD) Gọi O là giao điểm của AC và BD. a) Chứng minh: OA.OD = OB.OC b) Qua O kẻ MN // AB (M ∈ AD, N ∈ BC). Chứng minh O là trung điểm của MN.1. Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD/AB = AE/AC
a) Chứng minh: AD/BD = AE/EC
b) Tính BC biết AD = 2cm, BD = 1cm, DE = 3cm.
2. Cho tam giác ABC có AB = 11cm. Lấy D trên đoạn AB sao cho AD = 4cm. Qua D kẻ DE // BC (E thuộc AC).
Biết EC-AE = 1,5cm, BC = 8cm.
a) Tính tỉ số AE: EC
b) Tính các đoạn thẳng AE, DE?
3.Cho hình thang ABCD (AB//CD) Gọi O là giao điểm của AC và BD.
a) Chứng minh: OA.OD = OB.OC
b) Qua O kẻ MN // AB (M ∈ AD, N ∈ BC). Chứng minh O là trung điểm của MN.
1 cho hình thang ABCD(AB//CD, AB<CD). gọi trung điểm của ac đường chéo AC, BD theo thứ tự là N và M, CMR
a, MN//AB
b. MN= \(\dfrac{CD-AB}{2}\)
2. tam giac ABc vuong tai A co duong cao AH (H thuộc BC). từ H kẻ HE vuông góc với Ab (E thuộc AB0 và HF vuông góc với AC (Fthuoc ÁC). hỏi khi độ dài các cạnh AB, ÁC thay đổi thì \(\dfrac{AE}{AB}+\dfrac{AF}{AC}\)có thay đổi kg? vì sao?
1. Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD/AB = AE/AC
a) Chứng minh: AD/BD = AE/EC
b) Tính BC biết AD = 2cm, BD = 1cm, DE = 3cm.
2. Cho tam giác ABC có AB = 11cm. Lấy D trên đoạn AB sao cho AD = 4cm. Qua D kẻ DE // BC (E thuộc AC).
Biết EC-AE = 1,5cm, BC = 8cm.
a) Tính tỉ số AE: EC
b) Tính các đoạn thẳng AE, DE?
3.Cho hình thang ABCD (AB//CD) Gọi O là giao điểm của AC và BD.
a) Chứng minh: OA.OD = OB.OC
b) Qua O kẻ MN // AB (M ∈ AD, N ∈ BC). Chứng minh O là trung điểm của MN.
MÌNH ĐANG CẦN GẤP, MNG GIÚP VỚI Ạ
cho hình thang ABCD ( AB//CD ) có AB=CD=\(\dfrac{1}{2}\)CD. gọi M là trung điểm của CD , H là giao điểm của AM và BD
a. CMR tứ giác ABMD là hình thoi
b. CMR DB ⊥ BC
c. CMR △ADH đồng dạng với ΔCDB
d. biết AB=2,5cm ; BD =4cm . tính độ dài BC và diện tích hình thang ABCD
Cho hình thang ABCD có AB song song CD (AB<CD). Gọi O là giao điểm của 2 đường chéo, K là giao điểm của AD và BC. Đường thẳng KO cắt AB, CD theo thứ tự ở M và N. Chứng mỉnh rằng:
a) \(\dfrac{MA}{ND}=\dfrac{MB}{NC}\)
b) \(\dfrac{MA}{NC}=\dfrac{MB}{ND}\)
c) MA=MB
NC=ND