\(AB\) // CD \(\Rightarrow\left(SAB\right)\cap\left(SCD\right)=Sx\) // AB // CD
SA \(\perp\) đáy \(\Rightarrow SA\perp AB\) ; mà AB // Sx \(\Rightarrow SA\perp Sx\)
Dễ dàng c/m : \(CD\perp\left(SAD\right)\Rightarrow CD\perp SD\) ; mà Sx // CD . Suy ra : \(SD\perp Sx\)
Suy ra : \(\left(\left(SAB\right);\left(SCD\right)\right)=\left(SA;SD\right)=\widehat{ASD}\)
\(\Delta SAD\perp\) tại A có : \(tan\widehat{ASD}=\dfrac{AD}{AS}=\dfrac{a}{\sqrt{3}a}=\dfrac{1}{\sqrt{3}}\Rightarrow\widehat{ASD}=30^o\)
\(\Rightarrow\left(\left(SAB\right);\left(SCD\right)\right)=30^o\)