\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\left(x^2+ax+1\right)=a+2\)
\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(2x^2-x+3a\right)=3a+1\)
Để hàm có giới hạn khi \(x\rightarrow1\) thì:
\(a+2=3a+1\Rightarrow a=\dfrac{1}{2}\)