\(A=\dfrac{9n+4}{3n-2}=\dfrac{9n-6+10}{3n-2}=\dfrac{3\left(3n-2\right)+10}{3n-2}=3+\dfrac{10}{3n-2}\)
Để A nguyên thì \(3n-2\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
Ta có bảng:
3n-2 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
n | \(-\dfrac{8}{3}\left(loại\right)\) | -1 | 0 | \(\dfrac{1}{3}\left(loại\right)\) | 1 | \(\dfrac{4}{3}\left(loại\right)\) | \(\dfrac{7}{3}\left(loại\right)\) | 4 |
Vậy \(n\in\left\{-1;0;1;4\right\}\)