\(\Leftrightarrow2\left(x^2-x\right)+3\sqrt{x^2-x+2}=0\)
Đặt \(\sqrt{x^2-x+2}=t>0\Rightarrow x^2-x=t^2-2\)
Pt trở thành:
\(2\left(t^2-2\right)+3t=0\Leftrightarrow2t^2+3t-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-3+\sqrt{41}}{4}\\t=\dfrac{-3-\sqrt{41}}{4}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2-x=t^2-2=\dfrac{9-3\sqrt{41}}{8}\)
\(\Leftrightarrow x^2-x-\dfrac{9-3\sqrt{41}}{8}=0\)
\(\Delta=1+\dfrac{9-3\sqrt{41}}{2}=\dfrac{11-3\sqrt{41}}{2}< 0\)
Pt đã cho vô nghiệm