sin2\(\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right).tan^2x-cos^2\dfrac{x}{2}\) = 0
⇔ \(\dfrac{1-cos\left(x-\dfrac{\pi}{2}\right)}{2}.tan^2x-\dfrac{1+cosx}{2}=0\)
⇔ \(\dfrac{1-sinx}{2}.tan^2x-\dfrac{1+cosx}{2}=0\)
⇔ tan2x - sin.tan2x - 1 - cosx = 0
⇒ sin2x - sin.cos2x - cos2x - cos3x = 0 (nhân cả 2 vế với cos2x)
⇔ cos2x - sin2x + cos3x - sinx.cos2x = 0 (đổi dấu 2 vế)
⇔ (cosx - sinx)(cosx + sinx) + cos2x (cosx - sinx)
⇔ \(\left[{}\begin{matrix}cosx-sinx=0\left(1\right)\\cosx+sinx+cos^2x=0\left(2\right)\end{matrix}\right.\)
(1) ⇔ \(cos\left(x+\dfrac{\pi}{4}\right)=0\)
(2) ⇔ cosx(cosx + 1) + sinx = 0
⇔ \(cosx.2cos^2\dfrac{x}{2}\) + 2\(sin\dfrac{x}{2}.cos\dfrac{x}{2}\) = 0
⇔ \(\left[{}\begin{matrix}cos\dfrac{x}{2}=0\\cos\dfrac{x}{2}.cosx+sin\dfrac{x}{2}=0\left(\Psi\right)\end{matrix}\right.\)
\(\left(\Psi\right)\) ⇔ \(cos\dfrac{x}{2}.\left(2cos^2\dfrac{x}{2}-1\right)+sin\dfrac{x}{2}=0\)
⇔ \(2cos^3\dfrac{x}{2}+sin\dfrac{x}{2}-cos\dfrac{x}{2}\) = 0
⇔ \(2cos^3\dfrac{x}{2}+sin\dfrac{x}{2}\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)-cos\dfrac{x}{2}\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)=0\)
⇔ \(cos^3\dfrac{x}{2}+sin^3\dfrac{x}{2}+sin\dfrac{x}{2}.cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}.cos\dfrac{x}{2}=0\)
+ Xét \(cos^3\dfrac{x}{2}=0\), nếu thỏa mãn thì kết luận nghiệm
+ Xét \(cos^3\dfrac{x}{2}\ne0\), chia cả 2 vế cho \(cos^3\dfrac{x}{2}\) đưa về phương trình bậc 3 theo \(tan\dfrac{x}{2}\)