HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
cho ba số thực không âm a,b,c thỏa mãn ab+ac+bc=1 .Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{a^2+b^2+c^2+3}{a+b+c-abc}\)
giải hệ phương trình \(\left\{{}\begin{matrix}xy^2+3x^2=2y\\x^2y+y^2=-2x\end{matrix}\right.\)
giải phương trình\(x^2-5x+2=2\sqrt{x-1}-\sqrt[3]{x+2}\)
cho a,b,c là các số dương thỏa a+b+c=1.tìm giá trị nhỏ nhất của biểu thức P=\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(1+36abc\right)\)
tìm x,y nguyên dương thỏa mãn phương trình \(\dfrac{x}{7}+\dfrac{y}{41}+\dfrac{z}{49}=\dfrac{1000}{2009}\)
cho tam giác ABC ngoại tiếp đường tròn (I) .Gọi M,N,P lần lượt là các tiếp điểm trên các cạnh AB,AC,BC và MD,NE,PF là các đường cao tam giác MNP chứng minh FP là tia phân giác của góc BFC b)DA.FB.EC=EA.BD.FC
giải bất phương trình \(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right)\left(x^6-x^3+x^2-x+1\right)\ge0\)
giải bất phương trình sau :\(\dfrac{2x^3+3x}{7-2x}>\sqrt{2-x}\)