a. Thay m = -1 vào pt, ta đc:
\(x^2-2\left(-1-1\right)x+\left(-1\right)^2-3=0\)
\(\Leftrightarrow x^2+4x-2=0\)
\(\Delta'=2^2-\left(-2\right)=6>0\)
Do \(\Delta'>0\) nên pt có 2 nghiệm phân biệt:
\(x_1=-2+\sqrt{6}\)
\(x_2=-2-\sqrt{6}\)
b. \(\Delta'=\left[-\left(m-1\right)\right]^2-m^2+3\)
\(=m^2-2m+1-m^2+3\)
\(=-2m+3\ge0\) khi \(m\le\dfrac{3}{2}\)
Theo Vi - ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m^2-3\end{matrix}\right.\)
\(x_1^2+2\left(m-1\right)x_2=m^2+1\)
\(\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=m^2+1\)
\(\Leftrightarrow x_1^2+x_1x_2+x_2^2=m^2+1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=m^2+1\)
\(\Leftrightarrow\left(2m-2\right)^2-\left(m^2-3\right)=m^2+1\)
\(\Leftrightarrow4m^2-8m+4-m^2+3=m^2+1\)
\(\Leftrightarrow2m^2-8m+6=0\)
\(\Leftrightarrow m^2-4m+3=0\)
Có: \(a+b+c=1+\left(-4\right)+3=0\)
\(\Rightarrow\left\{{}\begin{matrix}m_1=1\left(TM\right)\\m_2=3\left(loại\right)\end{matrix}\right.\)
Vậy khi m = 1 thì PT có 2 nghiệm phân biệt thỏa mãn \(x_1^2+2\left(m-1\right)x_2=m^2+1\)