Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều.
=> BM = CM => M thuộc trung trực của BC
Lại có: AB = AC (ABC cân tại A)
=> A thuộc trung trực của BC
Do đó: AM là trung trực của BC
=> AM là phân giác góc BAC
=> Góc MAB = góc MAC = góc BAC /2 = 20 độ/2 = 10 độ
Tam giác ABC cân tại A
=> Góc CBA = góc BCA = (180 - góc BAC)/2 = (180 - 20)/2 = 80 độ
Lại có: Góc MCA = góc ACB - góc MCB
Góc MCB = 60 độ (Tg BCM đều)
Suy ra: góc MCA = 20 độ
Xét tg CMA và tg ADC có:
AC chung
CM = DA (cũng bằng BC)
Góc MCA = góc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> Góc CDA = góc CMA = 150 độ
Mặt khác: Góc CDA + góc BDC = 180 độ (2 góc kê bù)
Suy ra: góc BDC = 30 độ