HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho \(\cos\alpha=-\dfrac{2}{3}\) và \(\dfrac{\pi}{2}< \alpha< \pi\). Biết \(K=\sin2\alpha+cos2\alpha=x+y\sqrt{5}\) với x, y thuộc Q và \(\dfrac{x}{y}=\dfrac{a}{b}\) là phân số tối giản. Tính \(a-b\)
tính giá trị biểu thức sau:
\(G=\dfrac{tan30^o+tan40^o+tan50^o+tan60^o}{1-2sin^210^o}\)
Tính giá trị biểu thức:
\(A=\dfrac{1}{\sin10^0}-\dfrac{\sqrt{3}}{\cos10^0}\)
tìm tất cả các giá trị của tham số m để bất phương trình sau có No:
\(\sqrt{2+x}+\sqrt{4-x}-\sqrt{8+2x-x^2}\le m\)
chứng minh biểu thức không phụ thuộc vào x:
\(3\left(sin^8x-cos^8x\right)+4\left(cos^6x-2sin^6x\right)+6sin^4x\)