Cho hai hàm số y=2x2 có đồ thị (P) và y=x+3 có đồ thị (d).
a) Vẽ các đồ thị (P) và (d) trên cùng một mặt phẳng tọa Oxy.
b) Gọi A là giao điểm của hai đồ thị (P) và (d) có hoành độ âm. Viết phương trình của đường thẳng (Δ) đi qua A và có hệ số góc bằng -1.
c) Đường thẳng (Δ) cắt trục tung tại C, cắt trục hoành tại D. Đường thẳng (d) cắt trục hoành tại B. Tính tỉ số diện tích của hai Δ ABC và ΔABD.
Cho đường tròn (O;R) và điểm M cố định nằm ngoài (O;R). Từ M kẻ các tiếp tuyến MA, MB tới (O;R) (A, B là các tiếp điểm). Đường thẳng (d) bất kì qua M và cắt (O;R) tại hai điểm phân biệt C, D (C nằm giữa M và D). Gọi N là giao điểm của AB và CD.
a) Chứng minh tứ giác OAMB nội tiếp
b) Chứng minh rằng ΔANC và ΔDNB đồng dạng, ΔAMC và ΔDMA đồng dạng
c) Chứng minh: \(\dfrac{MC}{MD}=\dfrac{NC}{ND}\)