HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho a,b,c>0 . Chứng minh \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)≥\(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)
Cho a,b,c>1 và a+b+c=abc . Tìm giá trị nhỏ nhất của \(A=\frac{b-2}{a^2}+\frac{c-2}{b^2}+\frac{a-2}{c^2}\)
Cho x,y,z > 0 và x+y+z = \(\frac{3}{2}\).Tìm giá trị nhỏ nhất của \(T=\frac{x}{1+4y^2}+\frac{y}{1+4z^2}+\frac{z}{1+4y^2}\)
Cho x,y,z > 0. Chứng minh : \(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{x+z}}{y}+\frac{\sqrt{x+y}}{z}\)≥\(\frac{4\left(x+y+z\right)}{\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}\sqrt{4x+y}+\sqrt{x+2y}=5\\\frac{5}{3}x-\frac{1}{6}y+\sqrt{x+2y}=2\end{matrix}\right.\)