HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\left(2a-b\right)^2+\left(2b-a\right)^2=a^2+b^2\)
\(\left(2a-b\right)^2-b^2+\left(2b-a\right)^2-a^2=0\)
\(\left(2a-b-b\right)\left(2a-b+b\right)+\left(2b-a-a\right)\left(2b-a+a\right)=0\)
\(2a\left(a-b\right)-2b\left(a-b\right)=0\)
\(2\left(a-b\right)^2=0\)
a-b=0
a=b
\(\sqrt{2x-3}=x-3\left(đkxđ:x\ge\dfrac{3}{2}\right)\)
\(\Rightarrow2x-3=\left(x-3\right)^2\) (\(x\ge3\))
\(\Leftrightarrow2x-3=x^2-6x+9\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=6\end{matrix}\right.\)
Vậy....
a)\(\dfrac{2x-1}{x^2-1}=0\) (\(ĐKXĐ:x\ne\pm1\))
\(\Rightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
b)\(\dfrac{\left(x+2\right)\left(x-3\right)}{2x-5}=0\) (\(ĐKXĐ:x\ne\dfrac{5}{2}\))
\(\Rightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
c)\(\dfrac{x^2+x}{2x+1}=0\) (\(ĐKXĐ:x\ne-\dfrac{1}{2}\))
\(\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(2xy+16-x^2-y^2\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=16-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
Để A>1 thì
\(\dfrac{x+5}{x+8}>1\)
\(\dfrac{x+5}{x+8}-1>0\)
\(\dfrac{x+5-x-8}{x+8}>0\)
\(\dfrac{-3}{x+8}>0\)
Vì -3<0 nên
\(x+8< 0\)
\(x< 8\)
Vậy.....
\(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=9-\left(x+1\right)^2\le9\)
Dấu = xảy ra khi x+1=0 \(\Leftrightarrow x=-1\)
Vậy \(Max_C=9\) tại x=-1
\(\left\{{}\begin{matrix}a-b=\sqrt{2}+1\\a-c=\sqrt{2}-1\end{matrix}\right.\)
=> \(a-b+b-c=\sqrt{2}+1+\sqrt{2}-1\)
\(\Leftrightarrow a-c=2\sqrt{2}\)
\(B=a^2+b^2+c^2-ab-bc-ac\)
\(=\dfrac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}\)
\(=\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2}{2}\)
\(=\dfrac{\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}-1\right)^2+\left(2\sqrt{2}\right)^2}{2}\)
\(=\dfrac{3+2\sqrt{2}+3-2\sqrt{2}+8}{2}\)
\(=\dfrac{6+8}{2}=7\)
\(\left(2x-1\right)^2-4x^2+3=0\)
\(\Leftrightarrow4x^2-4x+1-4x^2+3=0\)
\(\Leftrightarrow-4x+4=0\)
\(\Leftrightarrow-4x=-4\)
=> x=1
\(\left(x-2\right)^2-9=0\)
\(\Leftrightarrow\left(x-2+3\right)\left(x-2-3\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
\(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3\)=0
\(\Leftrightarrow x=2\)
Có: \(a:7\) dư 4
=> \(a=7k+4\)
\(b:7\) dư 3
=> \(b=7k+3\)
Ta có: \(a.b=\left(7k+4\right)\left(7k+3\right)\)
\(=49k^2+49k+12\)
\(=49k^2+49k+7+5\)
Vì \(49k^2⋮7\) , \(49k⋮7\) , \(7⋮7\)
=> a.b : 7 dư 5
\(\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}\)
\(=\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}\)
\(=\sqrt{5}-\sqrt{3-2\sqrt{5}+3}\)
\(=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\sqrt{5}+1=1\)
b)\(\sqrt{33+8\sqrt{2}-\sqrt{33-8\sqrt{2}}}\)
\(=\sqrt{33+8\sqrt{2}-\sqrt{\left(\sqrt{32}-1\right)^2}}\)
\(=\sqrt{33+8\sqrt{2}-\sqrt{32}+1}\)
\(=\sqrt{34+4\sqrt{2}}\)