HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a) Do tam giác ABC cân tại B và BM là đường phân giác của góc B nên
BM là đường cao,đường trung tuyến,và đường trung trực của,đường cao của tam giác ABC(tính chất tam giác cân)
Xét tam giác BMA và tam giác BMC có
BA=BC(vì tam giác ABC cân tại B)
Góc BMA=góc BMC=90 độ(vì BM là đường cao của tam giác ABC)
Cạnh chung BM
Suy ra tam giác BMA= tam giác BMC(cạnh huyền-cạnh góc vuông)
b) Vì BM là đường cao của tam giác ABC nên
Góc BMA=BMC=90 độ
c) Do BM là đường trung trực của tam giác ABC nên(cmt ở câu a)
Nên AM=CM=8:2=4 CM
Áp dụng định lí Py-ta-go vào tam giác vuông ABM có
AB^2=AM^2+BM^2
Hay 5^2+BM^2=8^2
25+BM^2=64
BM^2=64-25=39
BM= căn bậc hai của 39=xấp xỉ 6
Vậy BM=~6
355
nhớ cho mình sao nha
3 x 1 = 3
3 x 2 = 6
3 x 3 = 9
3 x 4 = 12
3 x 5 = 15
75% của 100 là:75
\(A=\frac{10^{2015}+1}{10^{2016}+1}\Rightarrow10A=\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}=\frac{10^{2016}+10}{10^{2016}+1}\)
\(A=\frac{10^{2016}+1+9}{10^{2016}+1}=\frac{10^{2016}+1}{10^{2016}+1}+\frac{9}{10^{2016}+1}=1+\frac{9}{10^{2016}+1}\)
\(B=\frac{10^{2016}+1}{10^{2017}+1}\Rightarrow10B=\frac{10.\left(10^{2016}+1\right)}{10^{2017}+1}=\frac{10^{2017}+10}{10^{2017}+1}\)
\(B=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)
Vì 102016+1 < 102017+1
=>\(\frac{9}{10^{2016}+1}>\frac{9}{10^{2017}+1}\)
=>\(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)
=>10A > 10B
=>A > B
Phân số cần tìm có dạng: \(\frac{a}{11}\)
Theo bài ra ta có:
\(\frac{a}{11}=\frac{a-18}{11.7}\)
=>\(\frac{a}{11}=\frac{a-18}{77}\)
=>77a=11.(a-18)
=>77a=11a-18
=>11a-77a=18
=>-66a=18
=>a=\(\frac{18}{-66}=\frac{-3}{11}\)
Vậy p/s cần tìm là -3/11