HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho tam gic ABC cn ở A , BAC = 108°, Gọi O là một điểm nằm trên tia phân giác của góc C sao cho CBO = 120. Vẽ tam giác đều BOM ( M và A cùng thuộc một nửa mặt phẳng bờ BO). Chứng minh ba điểm C, A, M thẳng hàng.
Cho tam giác ABC cân ở A. Trên cạnh AB lấy điểm M, trên tia đối tia CA lấy điểm N sao cho BM = CN. Gọi K là trung điểm MN. Chứng minh ba điểm B, K, C thẳng hàng
Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho D là trung điểm AN. Chúng minh ba điểm M, C, N thẳng hàng.
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung điểm BD và N là trung điểm EC. Chứng minh ba điểm E, A, D thẳng hàng.
Cho tam giác ABC cân tại A, kẻ BD vuông góc với AC và kẻ CE vuông góc với AB. BD và CE cắt nhau tại I.
Chứng minh .
So sánh và
Đường thẳng AI cắt BC tại H. Chứng minh AI BC tại H.
Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc với CA (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh ba điểm B, M, D thẳng hàng.
Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối của tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED sao cho CM = EN. Chứng minh ba điểm M; A; N thẳng hàng.