HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(x^2-2\left(m+5\right)x+2m+9=0\)
tìm m để bất phương trình có 2 nghiệm phân biệt x1;x2 sao cho \(x_1-2\sqrt{x_2}=0\)
A = \(\dfrac{3\sqrt{x}}{\sqrt{x}-6}\) với đkxđ : \(x\ge0\); x#1;x#36
B =\(\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}\) với đkxđ : \(x\ge0\); x#1;x#36
Đặt T = \(\sqrt{AB}\). Tìm giá trị nhỏ nhất của biểu thức T
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3-8y^{3.}=0\\x^4-80y^2+96=0\end{matrix}\right.\)
Cho pt \(x^2-\left(m-3\right)x-5=0\)
Chứng minh py đã cho luôn có hai nghiệm trái dấu
Tìm m để pt đã cho có hai nghiệm \(x_1\) ,\(x_2\)thỏa mãn \(x_1\in Z\) \(x_2\in Z\)
(P) y= \(x^2\)
(d) y= 2(m-2)x+5\
Tìm để (d) cắt (P) tại hai điểm phân biệt có hoành độ \(x_1,x_2\)
Thỏa mãn \(x_1< x_2\)và \(\left|x_1\right|+\left|x_2+2\right|=10\)