HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Không gian mẫu là 15C4 = 1365.
Lấy từ hộp 4 viên có đủ 3 màu.
4C2.5C1.6C1 + 4C1.5C2.6C1 + 4C1.5C1.6C2 = 720
=> P = 1 - 720/1365
Mỗi bạn có 16 cách viết nên số phần tử không gian mẫu là 16^3.
Gọi A là biến cố '3 số được viết ra có tổng chia hết cho 3'
Các số tự nhiên từ 1 đến 16 chia thành 3 nhóm:
Nhóm I gồm các số tự nhiên chia hết cho 3 gồm 5 số.
Nhóm II gồm các số tự nhiên cho 3 dư 1 gồm 6 số.
Nhóm III gồm các số tự nhiên cho 3 dư 2 gồm 5 số.
Để ba số có tổng chia hết cho 3 thì xảy ra các trường hơp sau:
Cả ba bạn viết được số thuộc nhóm I có 5^3 cách.
Cả ba bạn viết được số thuộc nhóm II có 6^3 cách.
Cả ba bạn viết được số thuộc nhóm III có 5^3 cách.
Mỗi bạn viết được một số thuộc một nhóm có 3!×(5×6×5)
=> n(A) = 5^3 + 6^3 + 5^3 + 3!×(5×6×5) = 1366
Vậy P(A) = 1366/16^3
Số phần tử của không gian mẫu là n(Ω) = 6!
Gọi A là biến cố 'nam ngồi đối diện nữ.'
Chọn chỗ cho học sinh nam thứ nhất có 6 cách.
Chọn chỗ cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)
Chọn chỗ cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ hai).
Xếp chỗ cho 3 học sinh nữ : 3! cách.
=> n(A) = 6.4.2.3! = 288
Vậy P(A) = 288/6!
Lấy ngẫu nhiên 3 trong 5 đt là: 5C3 = 10 => n(Ω) = 10.Gọi A là biến cố 'chọn 3 đt có thể tạo được 1 tam giác.'Mà đk để tạo 1 tam giác là tổng 2 đoạn luôn lớn hơn đoạn còn lại.Do đó 5 đt thuộc {1,3,5,7,9} có bộ 3 thỏa mãn : {3,5,7} ; {3,7,9} ; {5,7,9}.=> n(A) = 3Vậy P(A) = 3/10
Số phần tử của không gian mẫu là n(Ω) = 10!.
Gọi A là biến cố mỗi học sinh đều nhận 1 đề và 2 bạn ngồi kề trên, dưới là khác loại đề.
Ta có:
Xếp 5 đề lẻ vào cùng 1 dãy ghế có 5! cách.
Xếp 5 đề chẵn vào cùng 1 dãy ghế có 5! cách.
Ở các cặp đề trên, dưới có thể đổi đề cho nhau nên có 2^5 cách.
=> n(A) = 5!.5!.2^5
Vậy P(A)=...
Gọi A là số tự nhiên có 8 chữ số a1a2a3a4a5a6a7a8 chia hết cho 1111
9999a1a2a3a4 + a1a2a3a4+a5a6a7a8 để A chia hết cho 1111 thì a1a2a3a4+a5a6a7a8 chia hết cho 1111
1000(a1 + a5) + 100(a2 + a6) + 10(a3 + a7) + (a4+ a8) (1) chia hết cho 1111
đặt (a1 + a5) = x
(a2 + a6) = y
(a3 + a7) = z
(a4+ a8) = t
3<=x<=15
xét đk
suy ra x = 9
suy ra x=y=z=t= 9
suy ra x+y+z+t=36 suy ra t= 36-x-y-z
thế vào (1) suy ra
999(a1 + a5) + 99(a2 + a6) + 9(a3 + a7) =36
hoán vị .......
suy ra có 3840 số