HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O.
Gọi M là một điểm trên cung nhỏ B C ⏜ (M khác B; C và AM không đi qua O).
Giả sử P là một điểm thuộc đoạn thẳng AM sao cho đường tròn đường kính MP cắt cung nhỏ BC tại điểm N khác M.
1). Gọi D là điểm đối xứng với điểm M qua O. Chứng minh rằng ba điểm N, P, D thẳng hàng.
2). Đường tròn đường kính MP cắt MD tại điểm Q khác M. Chứng minh rằng P là tâm đường tròn nội tiếp tam giác AQN.
Hình thoi có hai đường chéo là 8 cm và 12 cm. Một hình chữ nhật có các đỉnh là trung điểm của các cạnh hình thoi. Diện tích hình chữ nhật là
Cho tứ giác ABCD. Gọi E là trung điểm của AB, gọi F là trung điểm của CD, gọi I là giao điểm của AF, DE và gọi K là giao điểm của BF, CE. Chứng minh:
a) SEDC = SADF + SBCF.
b) SEIFK = SAID + SBKC
Một miếng đất hình chữ nhật dài 220m, chiều rộng bằng 3 4 chiều dài. Người ta trông cây xung quanh miếng đất, biết rằng cây nọ cách cây kia 5m và 4 góc có 4 cây. Hỏi cần tất cả bao nhiêu cây?
Chứng minh các phương trình sau là phương trình bậc nhất một ẩn với mọi giá trị của tham số m:
a) m 2 + 1 x − 3 = 0 ;
b) m 2 + 2 m + 3 x + m − 1 = 0