HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho phép mình giải max bài này ạ:
Ta có:
\(\sqrt{2a+bc}=\sqrt{\left(a+b+c\right)a+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\overset{cosi}{\le}\dfrac{a+b+a+c}{2}\)
Tương tự: \(\sqrt{2b+ac}\le\dfrac{b+c+b+a}{2};\sqrt{2c+ab}\le\dfrac{c+a+c+b}{2}\)
\(\Rightarrow Q\le\dfrac{4\left(a+b+c\right)}{2}=2\left(a+b+c\right)=4\)
Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{2}{3}\)
Nếu đề là tìm Min thì cho mình xin đăng lời giải.
Áp dụng bất đẳng thức Cosi ta có:
\(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)(1)
\(\dfrac{\left(x+y\right)^2}{2}+\dfrac{9}{2\left(x+y\right)}+\dfrac{9}{2\left(x+y\right)}\ge3\sqrt[3]{\dfrac{\left(x+y\right)^2}{2}\cdot\dfrac{9}{2\left(x+y\right)}\cdot\dfrac{9}{2\left(x+y\right)}}=\dfrac{9}{2}\sqrt[3]{3}\) (2)
Từ (1),(2) \(\Rightarrow x^2+y^2+\dfrac{9}{x+y}\ge\dfrac{9}{2}\sqrt[3]{3}\)
Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y>0\\\dfrac{\left(x+y\right)^2}{2}=\dfrac{9}{2\left(x+y\right)}\end{matrix}\right.\Leftrightarrow x=y=\dfrac{\sqrt[3]{9}}{2}\)
Sorry mình làm sai rồi nha. Đợi mk làm lại nhé
ĐKXĐ : \(0\le x,y\le1\)
Ta có :
\(\sqrt{x}+\sqrt{1-y}=m+1;\sqrt{y}+\sqrt{1-x}=m+1\\ \Rightarrow\sqrt{x}+\sqrt{1-y}=\sqrt{y}+\sqrt{1-x}\Rightarrow\sqrt{x}-\sqrt{y}=\sqrt{1-x}-\sqrt{1-y}\)
\(TH1:\ 1\ge x>y\ge0\Rightarrow\sqrt{x}>\sqrt{y};\sqrt{1-x}< \sqrt{1-y}\\ \Rightarrow\sqrt{x}-\sqrt{y}>0;\sqrt{1-x}-\sqrt{1-y}< 0\\ \Rightarrow\sqrt{x}-\sqrt{y}>\sqrt{1-x}-\sqrt{1-y}\left(VL\right)\)
\(TH2:\ 1\ge y>x\ge0. Tương\ tự:vôlý\)
TH3: x=y. Khi đó hệ phương trình trở thành
\(\sqrt{x}+\sqrt{1-x}=m+1\)
Áp dụng bất đẳng thức \(\sqrt{A+B}\le\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\) ta có:
\(1\le m+1\le\sqrt{2}\Leftrightarrow0\le m\le\sqrt{2}-1\)
A nhé bạn
Thế cxz tick đúng dcx.... Chịu
Có thể là copy mạng