Cho nửa đường tròn tâm O đường kính AB = 2R . 1 điểm C cố định thuốc AO . Đường thẳng đi qua c vuông góc vs AO cắt nửa đường tròn tại D . Trên cung BD lấy điểm M . Tiếp tuyến của ( O ) tại M cắt CD tại E . Gọi f là giao điểm của AM và CD .
a , CMR tứ giác BCFM nội tiếp
b , CMR EM = EF
c , Gọi I là tâm đường tròn ngoại tiếp tam giác FDM
CMR góc ABI có số đo không đổi
Cho nửa đường tròn tâm O đường kính AB = 2R . Điểm C cố định trên nửa đường tròn . Điểm M thuộc cung AC . Kẻ MH vuông góc với AB . Mb cắt CA tại E . Kẻ EI vuông góc với AB . Gọi K là giao điểm của AC và MH . CMR
a , tứ giác BHKC nội tiếp .
b , AK.AC = AM.AM
c , AE.AC + BE.BM không phụ thuộc vị trí điểm M .
Cho ( O ) và dây AB cố định . Gọi M là điểm chính giữa cung lớn AB . C là điểm bất kì nằm trên dây AB . MC cắt ( O ) tại D .
a , CMR MA . MA = MC . MD
b , MB là tiếp tuyến của ( O ) nội tiếp tam giác BCD .
c , Gọi O1 , O2 là cá đường tròn ngoại tiếp tam giác BCD và ACD . CMR khi C chuyển động trên AB thì tổng các bán kính của O1 và O2 không đổi .