Giải
a, Có 6 chữ số khác nhau
Gọi số cần tìm là \(\overline{abcdef}\)
a có 5 cách chọn ( \(a\ne0\))
\(\overline{bcedf}\)có 5! cách chọn
=> Có tất cả 5.5! = 600 (số)
Vậy có 600 số có 6 chữ số khác nhau
b, Gọi số có 4 chữ số cần tìm là \(\overline{abcd}\)
Vì \(\overline{abcd}\) là số chẵn nên d \(\in\left(0,2,4\right)\)
TH1: d=0
\(\overline{abc}\) có \(A_5^3\) cách chọn => 60 cách chọn
TH2 : d=(2,4) -> có 2 cách chọn
a có 4 cách chọn ( a khác 0,d)
b có 4 cách chọn ( b khác a,d)
c có 3 cách chọn ( c khác a,b,d)
=> 4.4.3.2=96 số
Nên kết hợp hai trường hợp ta có 60+96=156 ( số)
Vậy có 156 số có 4 chữ số chẵn khác nhau