Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=t\Rightarrow x=5t;y=4t\)(*)
Thay (*) vào \(x^2-y^2=1\) ta được:
\(\left(5t\right)^2\cdot\left(4t\right)^2=1\)
\(\Rightarrow5^2\cdot t^2-4^2\cdot t^2=1\cdot4\)
\(\Rightarrow t^2\left(25-16\right)=1\)
\(\Rightarrow t^2\cdot9=1\)
\(\Rightarrow t^2=\dfrac{1}{9}\)
\(\Rightarrow t=\dfrac{1}{3}\) hoặc \(t=\dfrac{-1}{3}\)
\(\Rightarrow x=5t;y=4t\)(tự tính nhá )
b) \(\left|2x-y+\dfrac{1}{2}\right|+\left(x+y-\dfrac{3}{2}\right)^2=0\) khi \(\left|2x-y+\dfrac{1}{2}\right|=\left(x+y-\dfrac{3}{2}\right)=0\) hoặc \(\left|2x-y+\dfrac{1}{2}\right|\) và\(\left(x+y-\dfrac{3}{2}\right)^2\) là 2 số đối nhau
mà \(\left|2x-y+\dfrac{1}{2}\right|\) và \(\left(x+y-\dfrac{3}{2}\right)^2\) đều lớn hơn hoặc bằng 0 nên không thể là 2 số đối nhau
\(\Rightarrow\left|2x-y+\dfrac{1}{2}\right|=\left(x+y-\dfrac{3}{2}\right)^2=0\)
\(\left|2x-y+\dfrac{1}{2}\right|=0\Rightarrow2x-y+\dfrac{1}{2}=0\)
\(\Rightarrow2x-y=-\dfrac{1}{2}\)
\(\Rightarrow y=2x-\left(-\dfrac{1}{2}\right)=2x+\dfrac{1}{2}\) (1)
\(\left(x+y-\dfrac{3}{2}\right)^2=0\Rightarrow x+y-\dfrac{3}{2}=0\)
\(\Rightarrow x+y=\dfrac{3}{2}\) (2)
Thay (1) vào (2) ta được:
\(x+2x+\dfrac{1}{2}=\dfrac{3}{2}\)
\(\Rightarrow3x=\dfrac{3}{2}-\dfrac{1}{2}=\dfrac{2}{2}=1\)
\(\Rightarrow x=\dfrac{1}{3}\)
\(\Rightarrow y=2x+\dfrac{1}{2}=2\cdot\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)