Câu 1: Phân tích các đa thức sau thành nhân tử: a. \(6x^2-6xy\) b. \(9+2xy-x^2-y^2\)
Câu 2:
a. Tìm x biết: 3x(x-1)+(1-x)=0
b. Với giá trị nào của x thì biểu thức \(x^3+4x\) có giá trị bằng 0.
c. Tìm x để phân thức \(\frac{x^2-1}{x^3-1}\) có giá trị bằng 0.
Câu 3: Thực hiền các phép tính sau: a. ( \(x^3+6x^2-13x-42\)) : ( x + 7 ) b. \(\left(x+1\right)^2-2\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\) c. \(\left(\frac{1}{x^2-4x}+\frac{2}{16-x^2}+\frac{1}{4x+16}\right):\frac{1}{4x}\)
Câu 4: Tìm giá trị lớn nhất của biểu thức :
A=\(\frac{3-\text{4x}}{x^2+1}\)
Câu 5: Cho tam giác ABC vuông cân tại A. M là một điểm bất kì trên cạnh BC. Đường thẳng qua M và vuông hóc với BC cắt các đường thẳng AB và AC lần lượt tại D và E. Qua M kẻ MH song song với AB ( H thuộc AC) và MK song song với AC ( K thuộc AC).
a. Chứng minh rằng : AM = KH b. Gọi F là điểm đối xứng với M qua đường thẳng AC. Chứng minh tứ giác MEFC là hình vuông. c. Gọi N là hình chiếu của B trên CD. Chứng minh ba điểm B, E, N thẳng hàng. d. Chứng minh rằng khi M di chuyển trên cạnh BC thì trung điểm O của KH nằm trên đường thẳng cố định.
1) Nhập vào 2 cạnh của hình chữ nhật. Tính và in ra màn hình chu vi và diện tích hình chữ nhật đó.
2) Nhập vào bán kính hình tròn. Tính và in ra màn hình diện tích và chu vi hình tròn đó. ( Cho biết Chu vi = đường kính x pi , diện tích = \(\left(bánkính\right)^2\) x pi )
3) Viết chương trình nhập vào 2 số a, b. So sánh 2 số đó.
4) Viết chương trình nhập vào 2 số a, b. Sắp xếp 3 số đó theo thứ tự tăng dần.