a) x4 + 5x3 + 10x - 4
= (x4 - 4) + (5x3 + 10x)
= (x2 + 2)(x2 - 2) + 5x(x2 + 2)
= (x2 + 2)(x2 - 2 + 5x)
b) x3 + y3 + z3 - 3xyz
= x3 + y3 + z3 + 3x2y + 3xy2 - 3x2y - 3xy2 - 3xyz
= (x3 + 3x2y + 3xy2 + y3) + z3 - (3x2y + 3xy2 + 3xyz)
= (x + y)3 + z3 - 3xy(x + y + z)
= (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z)
= (x + y + z)[(x + y)2 - (x + y)z + z2 - 3xy]
= (x + y + z)(x2 + 2xy + y2 - xz - yz + z2 - 3xy)
= (x + y + z)(x2 + y2 + z2 - xz - yz - xy)
c) x7 + x2 + 1
= x7 + x2 + 1 - x + x
= (x7 - x) + (x2 + x + 1)
= x(x6 - 1) + (x2 + x + 1)
= x(x3 - 1)(x3 + 1) + (x2 + x + 1)
= x(x3 + 1)(x - 1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)[x(x3 + 1)(x - 1) + 1]
= (x2 + x + 1)[(x4 + x)(x - 1) + 1]
= (x2 + x + 1)(x5 - x4 + x2 - x + 1)
d) x8 + x + 1
= x8 + x + 1 + x2 - x2
= (x8 - x2) + (x2 + x + 1)
= x2(x6 - 1) + (x2 + x + 1)
= x2(x3 + 1)(x3 - 1) + (x2 + x + 1)
= x2(x3 + 1)(x -1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)[x2(x3 + 1)(x - 1) + 1]
= (x2 + x + 1)[(x5 + x2)(x - 1) + 1]
= (x2 + x + 1)(x6 - x5 + x3 - x2 + 1)
e) x5 + x4 + 1
= x5 + x4 + x3 - x3 + x2 - x2 + x - x +1
= (x5 + x4 + x3) - (x3 + x2 + x) + (x2 + x + 1)
= x3(x2 + x + 1) - x(x2 + x + 1) + (x2 + x + 1)
= (x3 - x + 1)(x2 + x + 1)