Giả sử $P$ đạt Min tại $a=x,b=y,c=z.$ Khi đó: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}=1\); \(21xy+2yz+8zx=12\) $(\ast)$
Ta có:\(12=21ab+2bc+8ca=21xy.\left(\dfrac{ab}{xy}\right)+2yz\cdot\left(\dfrac{bc}{yz}\right)+8zx\cdot\left(\dfrac{ca}{zx}\right)\)
\(\ge\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{ab}{xy}\right)^{21xy}\cdot\left(\dfrac{bc}{yz}\right)^{2yz}\cdot\left(\dfrac{ca}{zx}\right)^{8zx}}\quad\)
\(=\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{a}{x}\right)^{21xy+8zx}\cdot\left(\dfrac{b}{y}\right)^{21xy+2yz}\cdot\left(\dfrac{c}{z}\right)^{2yz+8zx}}\quad\left(1\right)\quad\)
Lại có:
\(P=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=\dfrac{1}{x}\cdot\dfrac{x}{a}+\dfrac{2}{y}\cdot\dfrac{y}{b}+\dfrac{3}{z}\cdot\dfrac{z}{c}\)
\(\ge\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}\right)\sqrt[\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}\right)]{\left(\dfrac{x}{a}\right)^{\dfrac{1}{x}}\cdot\left(\dfrac{y}{b}\right)^{\dfrac{2}{y}}\cdot\left(\dfrac{z}{x}\right)^{\dfrac{3}{z}}}\quad\left(2\right)\)
\(=\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{a}{x}\right)^{21xy+8zx}\cdot\left(\dfrac{b}{y}\right)^{21xy+2yz}\cdot\left(\dfrac{c}{z}\right)^{2yz+8zx}}\quad\left(1\right)\quad\)
Từ $(1)$ và $(2)$ rõ ràng cần chọn $x,y,z$ sao cho:
\(\dfrac{{\left( {21{\mkern 1mu} xy + 8{\mkern 1mu} zx} \right)}}{{\dfrac{1}{x}}} = {\mkern 1mu} \dfrac{{\left( {21{\mkern 1mu} xy + 2{\mkern 1mu} yz} \right)}}{{\dfrac{2}{y}}} = \dfrac{{\left( {2yz + 8zx} \right)}}{{\dfrac{3}{z}}}\)
Suy ra \(x={\dfrac {5\,y}{12}},y=y,z={\dfrac {15\,y}{8}} \) thế ngược lại $(\ast)$ ta được $x=\dfrac{1}{3};y=\dfrac{4}{5};z=\dfrac{3}{2}$ từ đây dẫn đến lời giải của bạn Tan Thuy Hoang.
Lời giải tuy ngắn nhưng rất kỳ công:D