Học tại trường Chưa có thông tin
Đến từ Vĩnh Phúc , Chưa có thông tin
Số lượng câu hỏi 0
Số lượng câu trả lời 1439
Điểm GP 303
Điểm SP 1357

Người theo dõi (219)

Lana(Nana)
Hiếu
Lê Minh Nhật
Minz Ank

Đang theo dõi (0)


Câu trả lời:

a, \(A=9x^2-6x+5\)

\(=\left(9x^2-6x+1\right)+4\)

\(=\left(3x-1\right)^2+4\)

ta có:

\(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+4\ge4\forall x\)

Vậy Min A = 4

Để A = 4 thì \(3x-1=0\Rightarrow x=\dfrac{1}{3}\)

\(b,B=4x^2-5x\)

\(=\left(4x^2-5x+\dfrac{25}{16}\right)-\dfrac{25}{16}\)

\(=\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\)

TA có:

\(\left(2x-\dfrac{5}{4}\right)^2\ge\forall x\Rightarrow\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\ge-\dfrac{25}{16}\forall x\)Vậy Min B = \(-\dfrac{25}{16}\)

Để B = \(-\dfrac{25}{16}\) thì \(2x-\dfrac{5}{4}=0\Rightarrow2x=\dfrac{5}{4}\Rightarrow x=\dfrac{5}{8}\)

\(c,C=3x^2-6x\)

\(=3\left(x^2-2x+1\right)-3\)

\(=3\left(x-1\right)^2-3\)

Ta có:

\(3\left(x-1\right)^2\ge0\forall x\Rightarrow3\left(x-1\right)^2-3\ge-3\)

vậy Min C = -3

Để C = -3 thì x-1=0 => x = 1

\(d,D=5x^2-15x\)

\(=5\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{45}{4}\)

\(=5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\)

Ta có:

\(5\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\ge-\dfrac{45}{4}\)Vậy Min D = \(-\dfrac{45}{4}\)

Để \(D=-\dfrac{45}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

\(e,E=x^2+3x+4\)

\(=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

Vậy Min E = \(\dfrac{7}{4}\) khi \(x+\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

\(f,F=2x^2-4x+7\)

\(=2\left(x^2-2x+1\right)+5\)

\(=2\left(x-1\right)^2+5\ge5\forall x\)

Vậy Min F = 5 khi x - 1 =0 => x = 1

\(g,2x^2-3x=2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{9}{8}\)

\(=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\forall x\)

Vậy Min G = \(\dfrac{-9}{8}\) khi \(x-\dfrac{3}{4}=0\Rightarrow x=\dfrac{3}{4}\)

\(h,H=3x^2-4x=3\left(x^2-\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{4}{3}\)

\(=3\left(x-\dfrac{2}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\forall x\)

Vậy Min H = \(-\dfrac{4}{3}\) khi \(x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)