HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
bạn vào câu hỏi tương tự đi
hihi
thik nhất cái ảnh cuổi tuy k đẹp>.< nhưng chả hỉu s t vẫn thik haha
<3
số chia : 97
số bị chia :315
\(a,\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)
\(=x^3-8-x^3+3x^2-3x+1+7\)
\(=3x\left(x-1\right)\)
\(b,x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x\left(4-x^2\right)+x^3+27\)
\(=4x-x^3+x^3+27=4x-27\)
\(1,5x^2-4\left(x^2-2x+1\right)+20=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4+20=0\)
\(\Leftrightarrow x^2+8x+16=0\)
\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Rightarrow x+4=0\Rightarrow x=-4\)
\(2,x\left(x-2\right)-5x+10=0\)
\(\Leftrightarrow x\left(x-2\right)-5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(a,\dfrac{x}{2}+\dfrac{x}{3}+\dfrac{x}{4}+....+\dfrac{x}{1000}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{1000}\right)=0\)
Vì \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{1000}\ne0\Rightarrow x=0\)
Vậy pt có tập nghiệm \(S=\left\{0\right\}\)
\(b,3x+2+5=3x+7\)
\(\Leftrightarrow3x-3x=7-2-5\)
\(\Leftrightarrow0=0\)
Vậy x bằng mọi giá trị
\(a,-x^4\left(yx\right)^2\left(-x\right)^2\left(-y\right)^3=x^8y^5\)
\(\dfrac{1}{2}ax^3\left(-xy\right)\left(-y\right)^2=\dfrac{1}{2}ax^4y^2\)
\(-\dfrac{4}{5}y\left(\dfrac{3}{2}x^2y\right)^4=-\dfrac{81}{20}x^8y^5\)
\(3x^2+x=6\)
\(\Leftrightarrow3x^2+x-6=0\)
\(\Leftrightarrow3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}\right)-\dfrac{73}{12}=0\)
\(\Leftrightarrow3\left(x+\dfrac{1}{6}\right)^3=\dfrac{73}{12}\)
\(\Rightarrow\left(x+\dfrac{1}{6}\right)^2=\dfrac{73}{36}\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{6}=\sqrt{\dfrac{73}{36}}\\x+\dfrac{1}{6}=-\sqrt{\dfrac{73}{36}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{73}{36}}-\dfrac{1}{6}\\x=-\sqrt{\dfrac{73}{36}}-\dfrac{1}{6}\end{matrix}\right.\)
\(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(x^2+3x+1=t\) ta được:
\(t\left(t+1\right)-6\)
\(=t^2+t-6\)
\(=t^2-2t+3t-6\)
\(=t\left(t-2\right)+3\left(t-2\right)\)
\(=\left(t+3\right)\left(t-2\right)\)
\(=\left(x^2+3x+1+3\right)\left(x^2+3x+1-2\right)\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)