1. Cho tam giác ABC, trực tâm H nội tiếp đường tròn O đường kính AD
a. Cm tứ giác BHCD là hình bình hành
b. Kẻ đường kính OI vuông góc với BC tại I. Cm 3 điểm I,H,D thảng hàng
c. Cm AH=2OI
2. Cho A nằm trên đường tròn O đường kính BC, AB<AC. Vẽ dây AD vuông góc với BC tại H. Cm:
a. Tam giác ABC vuông
b. H là trung điểm của AD và AC=CD
c. BC là tia phân giác của góc ABD
d. Góc ABC = góc ADC
Làm nhanh giúp mk nhé mn ơi
Giải các phương trình sau:
1.
a. \(\sqrt{x+3}-\sqrt{x-4}=1\)
b. \(\sqrt{10-x}+\sqrt{x+3}=5\)
c. \(\sqrt{15-x}+\sqrt{3-x}=6\)
d. \(\sqrt{x-1}+\sqrt{x+1}=2\)
e. \(\sqrt{4x+1}-\sqrt{3x+4}=1\)
f. \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)
g. \(\sqrt{x+\sqrt{2x+1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
h. \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)
i. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
k. \(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)
l. \(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
m. \(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}=1}\)
n. \(\sqrt{x}+\sqrt{x+\sqrt{1-x}}=1\)
o. \(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x}-1\)
p. \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)
q. \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
r. \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)
s. \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\)
t. \(\sqrt{3x+15}-\sqrt{4x-17}=\sqrt{x+2}\)
u. \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
v. \(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+2}+\sqrt{x+5}\)
w. \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
x. \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
y. \(\sqrt{1-x}+\sqrt{x^2-3x+2}+\left(x-2\right)\sqrt{\dfrac{x-1}{x-2}}=3\)
z. \(\left(x-2\right)\left(x+2\right)+4\left(x-2\right)\sqrt{\dfrac{x+2}{x-2}}=-3\)
2.
a. \(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
b. \(\dfrac{x}{2+\dfrac{x}{2+\dfrac{x}{2+\dfrac{...}{2+\dfrac{x}{1+\sqrt{1+x}}}}}}=8\) (vế trái có 100 dấu phân thức)
c. \(\sqrt[3]{x+1}+\sqrt[3]{7-x}=2\)
d. \(\sqrt[4]{1-x}+\sqrt[4]{2-x}=\sqrt[4]{3-2x}\)
e. \(\sqrt[4]{1-x^2}+\sqrt[4]{1+x}+\sqrt[4]{1-x}=3\)
f. \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
g. \(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)
h. \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)
i. \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\)
k. \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
l. \(\sqrt[3]{24+x}+\sqrt{12-x}=6\)
m. \(\sqrt[3]{2-x}+\sqrt{x-1}=1\)
n. \(1+\sqrt[3]{x-16}=\sqrt[3]{x+3}\)
o. \(\sqrt[3]{25+x}+\sqrt[3]{3-x}=4\)
p. \(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
Làm nhanh giúp mk nhé mn ơi
a. Một miếng bìa hình vuông có cạnh 3dm. Ở mỗi góc của hình vuông lớn, người ta cắt đi một hình vuông nhỏ rồi cướp biển để cho một cái hộp hình hộp chữ nhật không nắp. Tính cạnh của hình vuông nhỏ để thể tích của hộp lớn nhất
b. Cũng hỏi như câu a, thay hình vuông có cạnh 3dm bởi hình chữ nhật có cạnh 8dm và 5dm
Tìm GTLN của:
a. \(A=x+\sqrt{2-x}\)
b.\(A=x\sqrt{1-x^2}\)
c. \(C=\left|x-y\right|\) với \(x+4y^2=1\)
d. \(D=a^2+b^2+c^2\) với \(-1\le a,b,c\le3,a+b+c=1\)
e. \(E=\left(\sqrt{a}+\sqrt{b}\right)^2\) với \(a>0,b>0,a+b\le1\)
f. \(F=\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}+\sqrt{c}\right)^4+\left(\sqrt{a}+\sqrt{d}\right)^4+\left(\sqrt{b}+\sqrt{c}\right)^4+\left(\sqrt{b}+\sqrt{d}\right)^4+\left(\sqrt{c}+\sqrt{d}\right)^4\)
Với a,b,c,d là các số dương và \(a+b+c+d\le1\)
g. \(G=\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\) Với a,b,c là các số dương và abc=1
h. \(H=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Với a,b,c là các số dương thỏa mãn \(1\le a\le b\le c\le2\)
i. \(I=x^2\sqrt{9-x^2}\)
Tìm GTNN của:
a. \(A=x-\sqrt{x}\)
b. \(B=x-\sqrt{x-2005}\)
c. \(C=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)
d. \(D=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)
e. \(E=\left|x-2\right|+\left|2x-3\right|+\left|4x-1\right|+\left|5x-10\right|\)
f. \(F=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)
g. \(G=\sqrt{x^2+1}+\sqrt{x^2-2x+5}\)
h. \(H=\sqrt{x^2-8x+17}+\sqrt{x^2+16}\)
i. \(I=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
k. \(K=x+y\) biết x và y là các số dương thỏa mãn \(\dfrac{a}{x}+\dfrac{b}{y}=1\)(a và b là các hằng số dương )
l. \(L=\left(x+y\right)\left(y+z\right)\) với các số dương x,y,z và \(xyz\left(x+y+z\right)=1\)
m. \(M=x^4+y^4+z^4\) biết rằng \(xy+yz+zx=1\)
n. \(N=a^3+b^3+c^3\) biết a,b,c lớn hơn -1 và \(a^2+b^2+c^2=12\)
o. \(O=\dfrac{x}{2}+\dfrac{2}{x-1}\) với x>1
p. \(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x+y+z=1\)
q. \(Q=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) với x,y,z là các số dương và \(x^2+y^2+z^2=1\)
r. \(R=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\) với a,b,c là các số dương và \(a+b+c=6\)
s. \(S=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\) với a,b,c là các số dương và \(a+b+c=1\)
t. \(T=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{d+a}\) với a,b,c,d là các số dương và \(a+b+c+d=1\)
u. \(U=\dfrac{x^2+y^2}{x-y}\) với x>y>0 và xy=1
v. \(V=\dfrac{5-3x}{\sqrt{1-x^2}}\)
w. \(W=\dfrac{1}{x}+\dfrac{1}{y}\) với x>0, y>0 và \(x^2+y^2=1\)
x. \(X=\left(1+x\right)\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\left(1+\dfrac{1}{x}\right)\) với x>0, y>0 và \(x^2+y^2=1\)
y. \(Y=\dfrac{2}{2-x}+\dfrac{1}{x}\) với 0<x<2
z. \(Z=3^x+3^y\) với x+y=4