\(A=\dfrac{8n+7}{4n-1}=\dfrac{2.\left(4n-1\right)+9}{4n-1}=\dfrac{2\left(4n-1\right)}{4n-1}+\dfrac{9}{4n-1}=2+\dfrac{9}{4n-1}\)
Vậy để \(A\in Z\) \(\Rightarrow\dfrac{9}{4n-1}\in Z\) ( Vì \(2\in Z\) )
Để \(\dfrac{9}{4n-1}\in Z\Rightarrow9⋮\left(4n-1\right)\Rightarrow\left(4n-1\right)\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng :
4n-1 | 1 | -1 | 3 | -3 | 9 | -9 |
4n | 2 | 0 | 4 | -2 | 10 | -8 |
n | \(\dfrac{1}{2}\)(loại) | 0(thỏa mãn) | 1(thỏa mãn) | \(\dfrac{-1}{2}\)(loại) | \(\dfrac{5}{2}\)(loại) | -2(thỏa mãn) |
Vậy với \(n\in\left\{-2;0;1\right\}\) thì thỏa mãn đầu bài
Tick mình nha