HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
ta có:
(2x+3)2+(2x−3)2−(2x+3)(4x−6)+xy
= (2x+3)2+(2x−3)2−2(2x+3)(2x-3)+xy
=(2x+3-2x+3)2+xy
=9+xy
b)x3+y3+z3-3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz = [(x+y)³ + z³] - 3xy(x+y+z) = (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z) = (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy] = (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) = (x+y+z)(x² + y² + z² - xy - xz - yz).
a)x4+5x3+10x-4
=x4+2x2+5x3+10x-2x2-4
=x2(x2+2)+5x(x2+2)-2(x2+2)
=(x2+5x-2)(x2+2)
d)x8+x+1
=x8-x2+x2+x+1
=x2(x6-1)+x2+x+1
=x2(x3-1)(x3+1)+x2+x+1
=(x5+x2)(x-1)(x2+x+1)+x2+x+1
=(x2+x+1)(x6-x5+x3-x2+1)
g)x10+x5+1
=x10-x+x5-x2+x2+x+1
=x(x9-1)+x2(x3-1)+x2+x+1
=x(x3-1)(x6+x3+1)+x2(x-1)(x2+x+1)+x2+x+1
=(x7+x4+x)(x-1)(x2+x+1)+x2(x-1)(x2+x+1)+x2+x+1
=(x2+x+1)(x8-x7+x5-x4+2x2-x+1)
e)x5+x4+1
=x5-x2+x4-x+x2+x+1
=x2(x3-1)+x(x3-1)+x2+x+1
=(x2+x)(x3-1)+x2+x+1
=(x2+x)(x-1)(x2+x+1)+x2+x+1
=(x2+x+1)(x3-x+1)
c)x7+x2+1
=x7-x+x2+x+1
=x(x6-1)+x2+x+1
=x(x3-1)(x3+1)+x2+x+1
=x(x-1)(x2+x+1)(x3+1)+x2+x+1
=(x2+x+1)(x5-x4+x2-x)
c)x3-3x+2
=(x3-x2 )+(x2-x)-(2x-2)
=x2(x-1)+x(x-1)-2(x-1)
=(x2+x-2)(x-1)
=(x2-x+2x-2)(x-1)
=(x+2)(x-1)2
c) (x+3)(x2-2x+3)=(x+3)(5-2x)
=>(x+3)(x2-2x+3) - (x+3)(5-2x)=0
=>(x+3)(x2-4x-2)=0
=>\(=>\left[{}\begin{matrix}x+3=0\\\text{x^2-4x-2}=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\\left(x-2\right)^2-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\\left(x-2\right)^2=6\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=\sqrt{6}+2\\x=-\sqrt{6}+2\end{matrix}\right.\)
Ta có:
a + b + c = 0
⇒ a + b = −c
⇒ (a + b)3 = (−c)3
⇔ a3 + 3a2b + 3ab2 + b3 = (−c)3
⇔ a3 + b3 + c3 = −3ab (a + b) = −3ab (−c) = 3abc (ĐPCM)