a) Theo đề bài, ta có :
\(a-b=2\left(a+b\right)=\frac{a}{b}\\ \Leftrightarrow a-b=2a+2b\\ \Leftrightarrow a-2a=b+2b\\ \Leftrightarrow-a=3b\\ \Leftrightarrow a=-3b\)
Thay a = -3b vào \(a-b=\frac{a}{b}\), ta được :
\(-3b-b=-\frac{3b}{b}\\
\Leftrightarrow-4b=-3\\
\Leftrightarrow b=-\frac{3}{-4}=\frac{3}{4}\)
Vì :
\(a=-3b\\
\Rightarrow a=-3\cdot\frac{3}{4}=-\frac{9}{4}\)
Vậy :
\(\left\{\begin{matrix}a=-\frac{9}{4}\\b=\frac{3}{4}\end{matrix}\right.\)
b) Theo đề bài, ta có :
\(a+b=ab=\frac{a}{b}\\ \Rightarrow a=ab^2\\
\Rightarrow b^2=\frac{a}{a}=1\\
\Rightarrow\left[\begin{matrix}b=1\\b=-1\end{matrix}\right.\)
TH1 : b = 1
\(\Rightarrow a+1=a\cdot1\\
\Rightarrow a+1=a\\
\Rightarrow a-a=1\)
\(\Rightarrow0=1\) ( Vô lý )
TH2 : \(b=-1\)
\(\Rightarrow a-1=a\cdot\left(-1\right)\\
\Rightarrow a-1=-a\\
\Rightarrow2a=1\\
\Rightarrow a=\frac{1}{2}\)
Vậy :
\(\left\{\begin{matrix}a=\frac{1}{2}\\b=-1\end{matrix}\right.\)
c) Theo đề bài, ta có :
\(\left\{\begin{matrix}ab=2\\bc=3\\ac=54\end{matrix}\right.\)
\(\Rightarrow\frac{b}{c}=\frac{ab}{ac}=\frac{2}{54}=\frac{1}{27}\\
\Rightarrow\frac{b}{1}=\frac{c}{27}\\
\Rightarrow\frac{b^2}{1}=\frac{c^2}{729}=\frac{bc}{27\cdot1}=\frac{3}{27}=\frac{1}{9}\)
\(\Rightarrow\left\{\begin{matrix}b^2=\frac{1}{9}\cdot1=\frac{1}{9}\\c^2=\frac{1}{9}\cdot729=81\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}b=\sqrt{\frac{1}{9}}=\frac{1}{3}\\c=\sqrt{81}=9\end{matrix}\right.\)
Vì \(\left\{\begin{matrix}ac=54\\c=91\end{matrix}\right.\)
\(\Rightarrow a=\frac{54}{9}=6\)
Vậy :
\(\left\{\begin{matrix}a=6\\b=\frac{1}{3}\\c=9\end{matrix}\right.\)