\(a,x^2-5=x^2-\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
\(b,x^4+x^3+x+1=x^3.\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right).\left(x^3+1\right)=\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x+1\right)^2\left(x^2-x+1\right)\)
\(c,x^3-19x-30=x^3-25x+6x-30\)
\(=x.\left(x^2-25\right)+6.\left(x-5\right)\)
\(=x.\left(x-5\right)\left(x+5\right)+6.\left(x-5\right)\)
\(=\left(x-5\right).\left[x\left(x+5\right)+6\right]\)
\(=\left(x-5\right).\left(x^2+5x+6\right)\)
\(=\left(x-5\right).\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x.\left(x+2\right)+3.\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)