a) P được xác định \(\Leftrightarrow\left\{{}\begin{matrix}x^2-1\ne0\\x+1\ne0\\x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(x-1\right)\ne0\\x+1\ne0\\x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1;x\ne1\\x\ne-1\\x\ne1\end{matrix}\right.\)
Vậy \(x\ne1;x\ne-1\) thì P được xác định.
b) \(P=\dfrac{2x^2}{x^2-1}+\dfrac{x}{x+1}-\dfrac{x}{x-1}\)
\(=\dfrac{2x^2}{\left(x+1\right)\left(x-1\right)}+\dfrac{x}{x+1}-\dfrac{x}{x-1}\)
\(=\dfrac{2x^2+x\left(x-1\right)-x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2x^2+x^2-x-x^2-x}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2x^2-2x}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2x}{x+1}\)
c) Tại x = -3 thì P được xác định nên ta có:
\(\dfrac{2x}{x+1}=\dfrac{2.\left(-3\right)}{-3+1}=\dfrac{-6}{-2}=3\)