Học tại trường Chưa có thông tin
Đến từ Hà Nội , Chưa có thông tin
Số lượng câu hỏi 75
Số lượng câu trả lời 45
Điểm GP 2
Điểm SP 14

Người theo dõi (11)

Chúc Anh
Đỗ Phương Anh
Đinh Trà My
lu nguyễn

Đang theo dõi (25)

Nguyễn Huy Tú
 Mashiro Shiina
Akai Haruma
_silverlining

Câu trả lời:

3, \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\) (I)

(ĐKXĐ: x+1 \(\ne\)0 ; y+4\(\ne\)0)

Đặt \(\dfrac{x}{x+1}=a\) ; \(\dfrac{1}{y+4}=b\)

hệ (I) trở thành:

\(\left\{{}\begin{matrix}3a-2b=4\\2a-5b=9\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}6a-4b=8\\6a-15b=27\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}11b=-19\\3a-2b=4\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=\dfrac{-19}{11}\\3a-2.\dfrac{-19}{11}=4\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=\dfrac{-19}{11}\\a=\dfrac{2}{11}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{2}{11}\\\dfrac{1}{y+4}=\dfrac{-19}{11}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2\left(x+1\right)=11x\\-19\left(y+4\right)=11\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x+2=11x\\-19y-76=11\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x-11x=-2\\-19y=87\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}-9x=-2\\y=\dfrac{-87}{19}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{2}{9}\left(tm\right)\\y=\dfrac{-87}{19}\left(tm\right)\end{matrix}\right.\)

- Thay x = \(\dfrac{2}{9}\) vào x+1 \(\ne\)0 có:

\(\dfrac{2}{9}+1\ne0\) \(\Leftrightarrow\dfrac{11}{9}\ne0\) (luôn đúng)

- Thay y = \(\dfrac{-87}{19}\) vào y+4 \(\ne\) 0có:

\(\dfrac{-87}{19}+4\ne0\) \(\Leftrightarrow\dfrac{-11}{19}\ne0\) (luôn đúng)

vậy ...

Câu trả lời:

2, \(\left\{{}\begin{matrix}\dfrac{2}{x+2y}+\dfrac{1}{y+2x}=3\\\dfrac{4}{x+2y}-\dfrac{3}{y+2x}=1\end{matrix}\right.\) (I)

(ĐKXĐ: x+2y \(\ne\)0 ; 2x+y\(\ne\)0)

Đặt \(\dfrac{1}{x+2y}=a\) ; \(\dfrac{1}{y+2x}=b\)

Hệ (I) trở thành:

\(\left\{{}\begin{matrix}2a+b=3\\4a-3b=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}4a+2b=6\\4a-3b=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}5b=5\\2a+b=3\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=1\\2a+1=3\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=1\left(tm\right)\\a=1\left(tm\right)\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{1}{x+2y}=1\\\dfrac{1}{y+2x}=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x+2y=1\\y+2x=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x+2y=1\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x+4y=2\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}3y=1\\x+2y=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x+2.\dfrac{1}{3}=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\y=\dfrac{1}{3}\left(tm\right)\end{matrix}\right.\)

- Thay x = \(\dfrac{1}{3}\) ; y = \(\dfrac{1}{3}\) vào x+2y \(\ne\)0 có:

\(\dfrac{1}{3}+2.\dfrac{1}{3}\ne0\) \(\Leftrightarrow\) \(1\ne0\) (luôn đúng)

- Thay x = \(\dfrac{1}{3}\) ; y = \(\dfrac{1}{3}\) vào y+2x\(\ne\)0 có:

\(\dfrac{1}{3}\) +2.\(\dfrac{1}{3}\)\(\ne\) 0 \(\Leftrightarrow\) \(1\ne0\)( luôn đúng)

Vậy hệ pt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)