\(a.b=4500\left\{\begin{matrix}BCNN\left(a;b\right)=300\\UCLN\left(a;b\right)=15\end{matrix}\right.\)
\(UCLN\left(a;b\right)=15\Rightarrow\left\{\begin{matrix}a=15.m\\b=15.n\end{matrix}\right.\)
\(\)( \(m;n\in\) N*, \(UCLN\left(m;n\right)=1,\left(m< n\right)\))
\(a.b=4500\)
\(\Leftrightarrow15.m.15.n=4500\)
\(\Leftrightarrow m.n=4500:\left(15.15\right)\)
\(\Leftrightarrow m.n=20\)
| \(m\) | \(1\) | \(4\) |
| \(n\) | \(20\) | \(5\) |
| \(a\) | \(15\) | \(60\) |
| \(b\) | \(300\) | \(75\) |
Vì \(a+15=b\) nên \(a=60\) và \(b=75\)
\(\left(2n-5\right)⋮n\)
\(\Rightarrow n+n-5⋮n\)
Vì \(n+n⋮n\) nên \(-5⋮n\)
\(\Leftrightarrow2n-5\inƯ\left(-5\right)=\left\{-5;-1;1;5\right\}\)
| \(2n-5\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
| \(n\) | \(0\) | \(2\) | \(3\) | \(5\) |
Vậy \(2n-5\in\left\{0;2;3;5\right\}\)
Bài 13:
a) \(n-1\inƯ\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
| \(n-1\) | \(-8\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) |
| \(n\) | \(-7\) | \(-3\) | \(-1\) | \(0\) | \(2\) | \(3\) | \(5\) | \(9\) |
Vậy \(n-1\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)
b) \(n+3\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
| \(n+3\) | \(-12\) | \(-6\) | \(-4\) | \(-3\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(12\) |
| \(n\) | \(-15\) | \(-9\) | \(-7\) | \(-6\) | \(-5\) | \(-4\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(3\) | \(9\) |
Vậy \(n+3\in\left\{-15;-9;-7;-6;-5;-4;-2;-1;0;1;3;9\right\}\)