HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(x+y+12=4\sqrt{x}-6\sqrt{y-1}\) (ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge1\end{matrix}\right.\))
\(\Leftrightarrow\left(x-4\sqrt{x}+4\right)+\left[\left(y-1\right)+6\sqrt{y-1}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}+3\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(\sqrt{x}-2\right)^2\ge0\\\left(\sqrt{y-1}+3\right)^2\ge9\end{matrix}\right.\Rightarrow VT\ge9\)
Vậy pt vô nghiệm.
a) https://hoc24.vn/hoi-dap/question/398481.html
b)
a2 + b2 + c2 = ab + ac + bc
<=> 2a2 + 2b2 + 2c2 = 2ac + 2ab + 2bc
<=> (a2 - 2ac + c2) + (a2 - 2ab + b2) + (b2 - 2bc + c2) = 0
<=> (a - b)2 + (a - c)2 + (b - c)2 = 0
<=> a = b = c
a)
\(\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)
\(=-1\)
\(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
c)
\(\sqrt{10+2\sqrt{9}}-\sqrt{9}\)
\(=\sqrt{\left(\sqrt{9}+1\right)^2}-\sqrt{9}\)
\(=1\)
Áp dụng BĐT AM - GM, ta có:
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)
\(=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)
\(\ge3+2+2+2=9\)
Dấu "=" xảy ra khi a = b = c
Biến đổi tương đương:
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\) (1)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)
\(\Leftrightarrow2a+2b-a-2\sqrt{ab}-b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng
=> (1) đúng
Dấu "=" xảy ra khi a = b
Muốn cách trình bày thì li-ke cho mk
16 : 15 = 4
90 :15 =6
135 :15=9
vay so do la 15
Kẻ DM _I_ AC (M thuộc AC)
\(\sin\alpha=\dfrac{DK}{DO}=\dfrac{DK}{\dfrac{BD}{2}}=\dfrac{2DK}{BD}\)
\(\dfrac{1}{2}\times AC\times BD\times\sin\alpha\)
\(=\dfrac{1}{2}\times AC\times BD\times\dfrac{2DK}{BD}\)
\(=AC\times DK\)
\(=S_{ABCD}\)
\(\left(AC\times DK=2\times\dfrac{1}{2}AC\times DK=2S_{ACD}=S_{ABCD}\right)\)
a) x^2 + 2x - 35 = 0
<=> (x - 5)(x + 7) = 0
<=> x = 5 hoặc x = - 7
b) 4x^2 - 12x - 27 = 0
<=> (2x - 9)(2x + 3) = 0
<=> x = 4,5 hoặc x = - 1,5
c) 9x^2 + 24x + 7 = 0
<=> (3x + 1)(3x + 7) = 0
<=> x = - 1/3 hoặc x = - 7/3
d) x^2 + y^2 - 4x + 6y + 13 = 0
<=> (x - 2)^2 + (y + 3)^2 = 0
<=> x = 2 và y = - 3
e) 25x^2 - 10x - 24 = 0
<=> (5x - 6)(5x + 4) = 0
<=> x = 1,2 hoặc x = - 0,8
3x2 + x - 10 = 0
<=> (x + 2)(3x - 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{3}\end{matrix}\right.\)
2x2 - x - 15 = 0
<=> (x - 3)(2x + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
7x2 + 23x - 20 = 0
<=> (7x - 5)(x + 4) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{7}\\x=-4\end{matrix}\right.\)
6x2 - 35x + 25 = 0
<=> (x - 5)(6x - 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{5}{6}\end{matrix}\right.\)
6x2 - x - 2 = 0
<=> (3x - 2)(2x + 1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
8x2 + 6x - 35 = 0
<=> (4x - 7)(2x + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{4}\\x=-\dfrac{5}{2}\end{matrix}\right.\)