Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 29
Số lượng câu trả lời 37
Điểm GP 14
Điểm SP 52

Người theo dõi (9)

Lê Thủy Tiên
Hien Than
Huỳnh Thu An
Lê Thi Yen Nhi

Đang theo dõi (0)


Câu trả lời:

Xét phương trình hoành độ giao điểm của \(C_1\)  và \(C_2\)

\(x^3-4mx+2=3x^2-4m\left(1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-4m-2\right)=0\)

\(\Leftrightarrow x=1\) hoặc \(x^2-2x-4m-2=0\left(2\right)\)(\(\Delta'=4m+3\)

Số giao điểm của  \(C_1\)  và \(C_2\) bằng số nghiệm của phương trình (1). Do đó 

\(\Delta'< 0\Leftrightarrow m< -\frac{3}{4}:\left(2\right)\)vô nghiệm \(\Rightarrow\left(1\right)\) có nghiệm duy nhất (x = 1)

                                                            \(\Rightarrow\)  \(C_1\)  và \(C_2\) có một giao điểm

\(\Delta'=0\Leftrightarrow m=-\frac{3}{4}:\left(2\right)\)trở thành \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\), trong trường hợp này, (1) cũng có nghiệm duy nhất (x = 1) \(\Rightarrow\) \(C_1\)  và \(C_2\) có một giao điểm

\(\Delta'>0\Leftrightarrow m>-\frac{3}{4}:\left(2\right)\) có 2 nghiệm phân biệt. Ta thấy \(t\left(1\right)=-4m-3\ne0\) với mọi \(m>-\frac{3}{4}\Rightarrow1\) không phải là nghiệm của (2) \(\Rightarrow\left(1\right)\) có 3 nghiệm phân biệt 

                                      \(\Rightarrow\) \(C_1\)  và \(C_2\) có ba giao điểm

Kết luận : 

- Với \(m\le-\frac{3}{4}\)  \(C_1\)  và \(C_2\) có một giao điểm

- Với \(m>-\frac{3}{4}\)  \(C_1\)  và \(C_2\) có 3 giao điểm