HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(e^x\ge x+1\) với mọi \(x\in R\) \(\Leftrightarrow e^x-x-1\ge0\) với mọi \(x\in R\)
Xét hàm số \(f\left(x\right)=e^x-x-1\) với mọi \(x\in R\)
Ta có : \(f'\left(x\right)=e^x-1=0\Leftrightarrow x=0\)
và : \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(e^x-x-1\right)=+\infty\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(e^x-x-1\right)=+\infty\)
Xét bảng biến thiên :
x f'(x) f(x) 8 8 8 8 - + + + 0 0 0 - +
Từ bảng biến thiên ta có : \(f\left(x\right)\ge0\) với mọi \(x\in R\)
hay : \(e^x-x-1\ge0\) với mọi \(x\in R\)
Ta có :
\(f'\left(x\right)=\frac{-\frac{\frac{1}{x}}{2\sqrt{\ln x}}}{\ln x}=-\frac{1}{2x\ln x\sqrt{\ln x}}< 0\) với mọi \(x\in\left[e;e^2\right]\Rightarrow\) hàm số nghịch biến với mọi \(x\in\left[e;e^2\right]\)
\(e\le x\le e^2\Rightarrow f\left(e\right)\ge f\left(x\right)\ge f\left(e^2\right)\Leftrightarrow1\ge f\left(x\right)\ge\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\begin{cases}Max_{x\in\left[e;e^2\right]}f\left(x\right)=1;x=e\\Min_{x\in\left[e;e^2\right]}f\left(x\right)=\frac{\sqrt{2}}{2};x=e^2\end{cases}\)
\(f'\left(x\right)=2x\ln x-x=x\left(2\ln x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\\ln x=\frac{1}{2}\ln\sqrt{e}\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\notin\left[\frac{1}{e};e^2\right]\\x=\sqrt{e}\in\left[\frac{1}{e};e^2\right]\end{array}\right.\)
Mà : \(\begin{cases}f\left(\frac{1}{e}\right)=-\frac{1}{e^2}\\f\left(e\right)=\frac{e}{2}\\f\left(e^2\right)=2e^4\end{cases}\) \(\Rightarrow\begin{cases}Max_{x\in\left[\frac{1}{e};e^2\right]}f\left(x\right)=2e^4;x=e^2\\Min_{x\in\left[\frac{1}{e};e^2\right]}f\left(x\right)=\frac{-1}{e^2};x=\frac{1}{e}\end{cases}\)
Ta có : \(f\left(x\right)=2^{x-1}+2^{3-x}\ge2\sqrt{2^{x-1}.2^{3-x}}=4\)
Dấu bằng xảy ra khi và chỉ khi \(2^{x-1}=2^{3-x}\Leftrightarrow x-1=3-x\)
\(\Leftrightarrow x=2\)
Vậy Min \(f\left(x\right)=4\) khi x = 2
y=5 like nha bạn thân!!
Mình nghĩ ngoài cách làm đúng còn cần trình bày khoa học, dễ nhìn nữa bạn ạ
Mặt phẳng (P) có vecto pháp tuyến \(\overrightarrow{p}=\left(1;2;3\right)\)
Mặt phẳng (Q) có vecto pháp tuyến \(\overrightarrow{q}=\left(3;2-1\right)\)
Vì \(1:2:3\ne3:2:\left(-1\right)\) nen (P) và (Q) cắt nhau.
Do mặt phẳng (R) cần tìm có phương trình vuông góc với cả (P) và (Q) nên (R) nhận 2 vecto \(\overrightarrow{p}\) và \(\overrightarrow{q}\) làm cặp vecto chỉ phương.
Vậy mặt phẳng (R) có vecto pháp tuyến \(\overrightarrow{r}\) cùng phương với vecto :
\(\left[\overrightarrow{p};\overrightarrow{q}\right]=\left(\left|\begin{matrix}2&3\\2&-1\end{matrix}\right|;\left|\begin{matrix}3&1\\-1&3\end{matrix}\right|;\left|\begin{matrix}1&2\\3&2\end{matrix}\right|\right)\)
\(=\left(-8;10;-4\right)=-2\left(4;-5;2\right)\)
Do đó có thể chọn \(\overrightarrow{r}=\left(4;-5;2\right)\)
Suy ra (R) có phương trình :
\(4\left(x-1\right)-5\left(y-1\right)+2\left(z-1\right)=0\)
hay \(\left(R\right):4x-5y+3z-1=0\)
a. \(\log_23\) và \(\log_311\)
Ta có : \(\log_23< \log_24=4=\log_39< \log_311\Rightarrow\log_23< \log_211\)
b.\(\left(\frac{5}{7}\right)^{\frac{-\sqrt{5}}{2}}\) và 1
Ta có : \(\begin{cases}\frac{-\sqrt{5}}{2}< 0\\0< \frac{5}{7}< 1\end{cases}\)\(\Rightarrow\left(\frac{5}{7}\right)^{\frac{-\sqrt{5}}{2}}>\left(\frac{5}{7}\right)^0=1\)
Giới hạn trên có dạng \(\infty-\infty\), ta đưa nó về dạng \(\frac{0}{0}\) nhờ phép biến đổi sau :
Đặt \(x=\frac{1}{y}\), khi \(x\rightarrow+\infty\) thì \(y\rightarrow0\)
Ta có : \(L=\lim\limits_{y\rightarrow0}\frac{\sqrt[3]{\left(1+a_1y\right)\left(1+a_2y\right)\left(1+a_3y\right)}-1}{y}\)
Áp dụng phép đổi biến \(x=\frac{1}{y}\) ta có "
\(L=\lim\limits_{x\rightarrow+\infty}\left(\sqrt[n]{\left(x+a_1\right)\left(x+a_1\right)......\left(x+a_1\right)}-x\right)=\frac{a_1+a_2+....+a_n}{n}\)
Do \(2+4^x>0\) với mọi \(x\in R\) nên phương trình đã cho tương đương với :
\(2-x=\frac{6}{2+4^x}\Leftrightarrow x+\frac{6}{2+4^x}-2=0\)
Đặt \(f\left(t\right)=t+\frac{6}{2+4^t}-2,t\in R;f'\left(t\right)=\frac{4^{2t}+4^t\left(4-6.\ln4\right)+4}{\left(2+4^t\right)^2}\)
và \(f'\left(t\right)=0\Leftrightarrow4^{2t}+4^t\left(4-6.\ln4\right)+4=0\)
Đây là phương trình bậc hai theo biến \(4^t\) nên nó có không quá hai nghiệm.
Do đó phương trình \(f'\left(t\right)=0\) có không quá hai nghiệm (mỗi giá trị dương của \(4^t\) cho ta đúng một giá trị của \(t\)
Từ đó ta thấy phương trình \(f\left(t\right)=0\) có không quá 3 nghiệm
Mặt khác, ta cũng có \(f\left(0\right)=f\left(1\right)=f\left(\frac{1}{2}\right)=0\) nên các giá trị này cũng nghiệm đúng phương trình ban đầu.
Vậy phương trình đã cho có 3 nghiệm là : \(x=0;x=1;x=\frac{1}{2}\)