HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\dfrac{1}{7}\left(\dfrac{7}{3.10}+\dfrac{7}{10.17}+...+\dfrac{7}{73.80}-\left(\dfrac{7}{2.9}+\dfrac{7}{9.16}+...+\dfrac{7}{23.30}\right)\right)\)
\(=\dfrac{1}{7}\left(\dfrac{1}{3}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{17}+...+\dfrac{1}{73}-\dfrac{1}{80}-\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{23}-\dfrac{1}{30}\right)\right)\)
\(=\dfrac{1}{7}\left(\dfrac{1}{3}-\dfrac{1}{80}-\left(\dfrac{1}{2}-\dfrac{1}{30}\right)\right)\)
\(=\dfrac{1}{7}\left(\dfrac{77}{240}-\dfrac{7}{15}\right)=\dfrac{1}{7}.\left(-\dfrac{7}{48}\right)=-\dfrac{1}{48}\)
\(53.74-53.7^2+5^2.47\)
\(=53.74-53.49+25.47\)
\(=53\left(74-49\right)+25.47\)
\(=53.25+25.47\)
\(=25\left(53+47\right)=25.100=2500\)
a) \(7^2-7\left(13-x\right)=14\)
\(7\left(13-x\right)=49-14=35\)
\(13-x=5\)
\(x=13-5=8\)
b) \(5x-5^2=10\)
\(5x=10+25=35\)
\(x=7\)
c) \(4\left(x-5\right)-2^3=2^4.3=48\)
\(4\left(x-5\right)=48+8=56\)
\(x-5=14\)
\(x=19\)
\(27+27+72:9\)
\(=54+8\)
\(=62\)
\(sinC=\dfrac{AH}{AC}=\dfrac{9}{16}\)
\(\Rightarrow\widehat{C}\simeq34,2\)
\(\Rightarrow\widehat{B}=180^o-90^o-34,2^o=55,8^o\)
\(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}\\cosB=\dfrac{AB}{BC}\\tanB=\dfrac{AC}{AB}\\cotB=\dfrac{AB}{AC}\end{matrix}\right.\)
a) \(210:x=2,1:0,25=8,4\)
\(x=210:8,4=25\)
b) \(x.2+x.0,5=6,25\)
\(2,5x=6,25\)
\(x=6,25:2,5=2,5\)
c) \(x:0,25-x=15,6\)
\(3x=15,6\)
\(x=5,2\)
d) \(x:12,5=3,75.4=15\)
\(x=15.12,5=187,5\)
e) \(x.12,6-x.5,6=42\)
\(7x=42\)
\(x=6\)
g) \(x:0,1-x:4-x.0,75=2,25\)
\(10x-\dfrac{x}{4}-\dfrac{3x}{4}=2,25\)
\(9x=2,25\)
\(x=0,25\)
Ta có:
\(\left\{{}\begin{matrix}GM=\dfrac{1}{3}AM=5\\GN=\dfrac{1}{3}BN=4\end{matrix}\right.\)
\(S_{CMN}=S_{AMN}=15\sqrt{3}\)
\(S_{GMN}=\dfrac{1}{3}S_{AMN}=5\sqrt{3}\)
=> \(5\sqrt{3}=\dfrac{1}{2}.GM.GN.sinG\)
\(\Rightarrow sinG=\dfrac{\sqrt{3}}{2}\Rightarrow\widehat{G}=60^o\)
\(MN=\sqrt{GM^2+GN^2-2GM.GN.cosG}=\sqrt{21}\)
\(x=\sqrt{9+4\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\sqrt{5}+2-\sqrt{5}-1=1\) ( \(\left\{{}\begin{matrix}\sqrt{5}+2>0\\\sqrt{5}+1>0\end{matrix}\right.\))
a) \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=\dfrac{1-1}{1+2}=0\left(đk:x\ge0\right)\)
b) \(A>\dfrac{1}{2}\)\(\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+2}>\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-2}{2\sqrt{x}+4}>0\)
\(\Leftrightarrow\sqrt{x}>4\) (vì \(2\sqrt{x}+4>0\))
\(\Leftrightarrow x>16\)
a) \(x^2+4x+4-4y^2=\left(x+2\right)^2-\left(2y\right)^2=\left(x+2y+2\right)\left(x-2y+2\right)\)
b) \(x^2+6xy+9y^2-4z^2=\left(x+3y\right)^2-\left(2z\right)^2=\left(x+3y-2z\right)\left(x+3y+2z\right)\)
c) \(x^2+2xy+y^2-z^2+4zt-4t^2=\left(x+y\right)^2-\left(z-2t\right)^2\)
\(=\left(x+y+z-2t\right)\left(x+y-z+2t\right)\)
d) \(a^2-x^2-ay+xy=\left(a-x\right)\left(a+x\right)-y\left(a-x\right)=\left(a-x\right)\left(a+x-y\right)\)
e) \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left(y-z+x-y\right)+z^2\left(x-y\right)\)
\(=\left(x^2-y^2\right)\left(y-z\right)+\left(z^2-y^2\right)\left(x-y\right)\)
\(=\left(y-z\right)\left(x^2-y^2-\left(y+z\right)\left(x-y\right)\right)\)
\(=\left(y-z\right)\left(x^2-y^2-xy+y^2-zx+yz\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
a) \(x^4+3x^3+x^2+3x=x^3\left(x+3\right)+x\left(x+3\right)=x\left(x+3\right)\left(x^2+1\right)\)
b) \(x^4+x^2-27x-9=x\left(x^3-27\right)+\left(x-3\right)\left(x+3\right)\)
\(=x\left(x-3\right)\left(x^2+3x+9\right)+\left(x-3\right)\left(x+3\right)\)
\(=\left(x-3\right)\left(x^3+3x^2+9x+x+3\right)=\left(x-3\right)\left(x^3+3x^2+10x+3\right)\)
c) \(x^2-xy-x+y=x\left(x-y\right)-\left(x-y\right)=\left(x-1\right)\left(x-y\right)\)
d) \(xy+4-x^2+2y=\left(2-x\right)\left(x+2\right)+y\left(x+2\right)=\left(x+2\right)\left(y+2-x\right)\)
e) \(xy+y-2\left(x+1\right)=y\left(x+1\right)-2\left(x+1\right)=\left(y-2\right)\left(x+1\right)\)
f) \(5\left(x-y\right)+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(a+5\right)\left(x-y\right)\)