HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
B
\(\left|x-\dfrac{2}{3}\right|=\dfrac{3}{4}-\dfrac{1}{4}\)
\(x+\dfrac{2}{3}=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}-\dfrac{2}{3}\)
\(x=\dfrac{3}{6}-\dfrac{4}{6}\)
\(x=-\dfrac{1}{6}\)
a, 6x = 613 + 5
6x = 618
x = 618 : 6
x = 103
b,x - 47 = 115
x = 115 + 47
x = 162
c,146 - x = 401 - 315 = 86
x = 146 - 86
x = 60
d,6x + 70 = 575 - 445 = 130
6x = 130 - 70 = 60
x = 60 : 6
x = 10
e, x - 5 = 15
x = 15 + 5
x = 20
f,x - 105 = 15 . 21 = 315
x = 315 + 105
x = 420
a, \(\left(250.4\right).73\)
\(=1000.73\)
\(=73000\)
b,\(75.\left(43+64-7\right)\)
\(=75.100\)
\(=7500\)
\(x+2=17\)
\(x=17-2=15\)
câu 4 a
câu 5 b
câu 6 d
\(200+17+\dfrac{7}{100}\)
\(=217+\dfrac{7}{100}\)
\(=\dfrac{21700}{100}+\dfrac{7}{100}\)
\(=\dfrac{21707}{100}\)
a, Do \(\dfrac{1}{n^2}< \dfrac{1}{n^2-1}\) với mọi n ≥ 2 nên
A < C = \(\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+\dfrac{1}{4^2-1}+......+\dfrac{1}{n^2-1}\)
Mặc khác :
\(C=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+......+\dfrac{1}{\left(n-1\right).\left(n+1\right)}\)
\(C=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+......+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)
\(C=-\left(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)< \dfrac{1}{2}.\dfrac{3}{2}=\dfrac{3}{4}< 1\)
Vậy A < 1
b,\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+.....+\dfrac{1}{\left(2n\right)^2}\)
\(B=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{n^2}\right)\)
\(B=\dfrac{1}{2^2}\left(1+A\right)\)
Suy ra \(P< \dfrac{1}{2^2}\left(1+1\right)=\dfrac{1}{2}\) ; hay \(P< \dfrac{1}{2}\)