HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho a;b;c thỏa mãn \(a\ge b\ge c\) và ab+bc+ac=5
\(CMR:\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(ab+bc+ac\right)\ge-4\)
Cho a;b;c>=0 thỏa mãn : \(3\left(a^2+b^2+c^2\right)+ab+bc+ac=12\)
Tìm min max của \(P=\dfrac{a^2+b^2+c^2}{a+b+c}+ab+bc+ac\)
Cho a;b;c >=0 thỏa mãn \(a^2+b^2+c^2=3\)
\(CMR:\dfrac{a}{b+2}+\dfrac{b}{c+2}+\dfrac{c}{a+2}\le1\)
Cho a;b;c>0 tm a+b+c=3
CMR \(\dfrac{2b+c}{a}+\dfrac{2c+a}{b}+\dfrac{2a+b}{c}+\dfrac{18abc}{ab+bc+ac}\ge12\)
Cho \(\left\{{}\begin{matrix}u_1=2021\\u_{n+1}=\dfrac{1}{2}\left(u_n+\dfrac{2020}{u_n}\right)\end{matrix}\right.\) CMR un có giới hạn và tìm giới hạn đó
Cho \(\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ac=1\end{matrix}\right.\) Tìm max của \(P=\dfrac{1-a^2}{1+a^2}+\dfrac{1-b^2}{1+b^2}+\dfrac{1-c^2}{1+c^2}\)
Cho \(\left\{{}\begin{matrix}x;y;z>=0\\x+y+z=2\end{matrix}\right.\) CMR \(\dfrac{1}{x^2-xy+y^2}+\dfrac{1}{y^2-yz+z^2}+\dfrac{1}{z^2-xz+x^2}\ge3\)
Cho \(\left\{{}\begin{matrix}u_n=1\\u_{n+1}=\sqrt{1+2u_nu_{n+1}}\end{matrix}\right.\)
CMR u2019 là số vô tỷ
Cho \(\left\{{}\begin{matrix}x;y;z>0\\x^2+y^2+z^2=x\left(y+z\right)+10yz\end{matrix}\right.\)
Tìm max của \(P=8xyz-\dfrac{3x^3}{y^2+z^2}\)