Học tại trường Chưa có thông tin
Đến từ Thành phố Hồ Chí Minh , Chưa có thông tin
Số lượng câu hỏi 11
Số lượng câu trả lời 84
Điểm GP 20
Điểm SP 76

Người theo dõi (0)

Đang theo dõi (0)


Câu trả lời:

\(x^2-2x-m^2+m-4=0\left(1\right)\)

Để phương trình (1) có 2 nghiệm phân biệt thì:

\(\Delta>0\Rightarrow\left(-2\right)^2-4.\left(-m^2+m-4\right)>0\)

\(\Rightarrow4+4m^2-4m+16>0\)

\(\Leftrightarrow\left(2m-1\right)^2+19>0\) (luôn đúng)

Vậy với \(\forall m\) thì phương trình (1) luôn có 2 nghiệm phân biệt.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2+m-4\end{matrix}\right.\)

 

Ta có: \(\left|3x_1\right|-\left|x_2\right|=6\left(2\right)\)

Ta thấy:\(-m^2+m-4=-\left(m^2-m+\dfrac{1}{4}\right)-\dfrac{15}{4}=-\left(m-\dfrac{1}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}< 0\)

\(\Rightarrow-m^2+m-4< 0\) hay \(x_1x_2< 0\). Do đó x1, x2 phải trái dấu.

Ta xét 2 trường hợp:

TH1, x1>0 , x2<0. Khi đó:

\(\left(2\right)\Rightarrow3x_1+x_2=6\)

\(\Rightarrow\left(x_1+x_2\right)-6=-2x_1\left(1'\right)\) và \(3\left(x_1+x_2\right)-6=2x_2\left(2'\right)\)

Lấy (1') nhân cho (2') ta được:

\(\left[\left(x_1+x_2\right)-6\right]\left[3\left(x_1+x_2\right)-6\right]=-4x_1x_2\)

\(\Rightarrow\left(-2-6\right)\left[3.\left(-2\right)-6\right]=-4\left(-m^2+m-4\right)\)

\(\Leftrightarrow-m^2+m-4=-24\)

\(\Leftrightarrow m^2-m+4=24\)

\(\Leftrightarrow m^2-m-20=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-4\end{matrix}\right.\)

TH2: x1<0 ; x2>0. Khi đó:

\(\left(2\right)\Rightarrow3x_1+x_2=-6\)

\(\Rightarrow\left(x_1+x_2\right)+6=-2x_1\left(3'\right)\) và \(3\left(x_1+x_2\right)+6=2x_2\left(4'\right)\)

Lấy (3') nhân cho (4') ta được:

\(\left[\left(x_1+x_2\right)+6\right]\left[3\left(x_1+x_2\right)+6\right]=-4x_1x_2\)

\(\Rightarrow\left(-2+6\right)\left[3.\left(-2\right)+6\right]=-4\left(-m^2+m-4\right)\)

\(\Rightarrow m^2-m+4=0\) (phương trình vô nghiệm)
Thử lại ta có \(\left[{}\begin{matrix}m=5\\m=-4\end{matrix}\right.\)

 

 

Câu trả lời:

\(\left\{{}\begin{matrix}x^2+y^2+3=4x\\x^3+12x+y^3=6x^2+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-4x+4\right)+y^2=1\\\left(x^3-6x^2+12x-8\right)+y^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2+y^2=1\\\left(x-2\right)^3+y^3=1\end{matrix}\right.\)

Đặt \(a=x-2;b=y\). Hệ phương trình trở thành:

\(\left\{{}\begin{matrix}a^2+b^2=1\\a^3+b^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2ab=\left(a+b\right)^2-1\\\left(a+b\right)\left(a^2+b^2-ab\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2ab=\left(a+b\right)^2-1\\\left(a+b\right)\left(1-\dfrac{\left(a+b\right)^2-1}{2}\right)=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(a+b\right)\left[3-\left(a+b\right)^2\right]=2\)

\(\Leftrightarrow3\left(a+b\right)-\left(a+b\right)^3=2\)

\(\Leftrightarrow\left(a+b\right)^3-3\left(a+b\right)+2=0\)

\(\Leftrightarrow\left(a+b\right)^3-\left(a+b\right)^2+\left(a+b\right)^2-\left(a+b\right)-2\left(a+b-1\right)=0\)

\(\Leftrightarrow\left(a+b\right)^2\left(a+b-1\right)+\left(a+b\right)\left(a+b-1\right)-2\left(a+b-1\right)=0\)

\(\Leftrightarrow\left(a+b-1\right)\left[\left(a+b\right)^2+\left(a+b\right)-2\right]=0\)

\(\Leftrightarrow\left(a+b-1\right)^2\left(a+b+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=1\\a+b=-2\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}a+b=1\\a^2+b^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\\left(a+b\right)^2-2ab=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=0\end{matrix}\right.\)

\(\Rightarrow\left(a;b\right)=\left(0;1\right),\left(1;0\right)\)

\(\Rightarrow\left(x-2;y\right)=\left(0;1\right),\left(1;0\right)\)

\(\Rightarrow\left(x;y\right)=\left(2;1\right),\left(3;0\right)\)

Với \(\left\{{}\begin{matrix}a+b=-2\\a^2+b^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-2\\\left(a+b\right)^2-2ab=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-2=S\\ab=\dfrac{3}{2}=P\end{matrix}\right.\left(2\right)\)

Ta có: \(S^2-4P=\left(-2\right)^2-4.\dfrac{3}{2}=-2< 0\)

\(\Rightarrow\)Không tồn tại số a,b nào thỏa hệ phương trình (2).

Vậy nghiệm (x;y) của hpt đã cho là \(\left(2;1\right),\left(3;0\right)\)