Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-5\right)^2+\left(y-3\right)^2=4\) và điểm \(A\left(1;2\right)\), một đường thẳng d đi qua A và cắt đường tròn (C) theo một dây cung MN có độ dài bằng \(2\sqrt{3}\). Viết phương trình của d ?
Giải bài tập sách giáo khoa
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-5\right)^2+\left(y-3\right)^2=4\) và điểm \(A\left(1;2\right)\), một đường thẳng d đi qua A và cắt đường tròn (C) theo một dây cung MN có độ dài bằng \(2\sqrt{3}\). Viết phương trình của d ?
Trong mặt phẳng tọa độ Oxy, cho elip (E) : \(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\). Gọi hai tiêu điểm của (E) là \(F_1,F_2\) và M là điểm thuộc (E) sao cho \(\widehat{F_1MF_2}=60^0\). Tìm tọa độ điểm M và tính diện tích tam giác \(MF_1F_2\) ?
Thảo luận (1)Hướng dẫn giải
Trong mặt phẳng Oxy cho đường tròn (T) có phương trình :
\(x^2+y^2-4x-2y+3=0\)
a) Tìm tọa độ tâm và tính bán kính của đường tròn (T)
b) Tìm m để đường thẳng \(y=x+m\) có điểm chung với đường tròn (T)
c) Viết phương trình tiếp tuyến \(\Delta\) với đường tròn (T) biết rằng \(\Delta\) vuông góc với đường thẳng d có phương trình \(x-y+2006=0\)
Thảo luận (1)Hướng dẫn giảia) Đường tròn (T) có tâm là điểm (2 ; 1) và có bán kính bằng \(\sqrt 2\)
b) \(-3\le m\le1\)
c) Có hai tiếp tuyến với (T) thỏa mãn đề bài là :
\({\Delta _1}:x + y - 1 = 0\)
\({\Delta _2}:x + y - 5 = 0\)
(Trả lời bởi qwerty)
Cho đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính R và điểm \(K\left(1;3\right)\)
a) Cho R = 1. Viết phương trình tiếp tuyến của (C) đi qua K
b Xác định R để từ K vẽ được đến (C) hai tiếp tuyến tiếp xúc với (C) lần lượt tại hai điểm \(M_1,M_2\) sao cho diện tích tứ giác \(KM_1IM_2\) bằng \(2\sqrt{6}\)
Thảo luận (1)Hướng dẫn giải
Trong mặt phẳng Oxy cho elip (E) có tiêu điểm thứ nhất là \(\left(-\sqrt{3};0\right)\) và đi qua điểm \(M\left(1;\dfrac{\sqrt{3}}{2}\right)\)
a) Hãy xác định tọa độ các đỉnh của (E)
b) Viết phương trình chính tắc của (E)
c) Đường thẳng \(\Delta\) đi qua tiêu điểm thứ hai của elip (E) và vuông góc với trục Ox và cắt (E) tại hai điểm C và D. Tính độ dài đoạn thẳng CD ?
Thảo luận (1)Hướng dẫn giảia) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).
Phương trình chính tăc của (E) có dạng
\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)
Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)
\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)
Và \({a^2} = {b^2} + {c^2} = {b^2} + 3\)
Thay vào (1) ta được :
\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)
\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)
Suy ra \({a^2} = 4\)
Ta có a = 2 ; b = 1.
Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)
(0 ; -1) và (0 ; 1).
b) Phương trình chính tắc của (E) là :
\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)
c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).
Phương trình tung độ giao điểm của \(\Delta\) và \((E)\) là :
\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)
Suy ra tọa độ của C và D là :
\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\) và \(\left( {\sqrt 3 ;{1 \over 2}} \right)\)
Vậy CD = 1.
(Trả lời bởi qwerty)
Cho hai điểm \(A\left(3;-1\right);B\left(-1;-2\right)\) và đường thẳng d có phương trình \(x+2y+1=0\)
a) Tìm tọa độ điểm C trên đường thẳng d sao cho tam giác ABC là tam giác cân tại C
b) Tìm tọa độ của điểm M trên đường thẳng d sao cho tam giác AMB vuông tại M
Thảo luận (1)Hướng dẫn giảia) đặc C (x;y) , ta có : C \(\in\) (d) \(\Leftrightarrow x=-2y-1\)
vậy C (-2y -1 ; y ).
tam giác ABC cân tại C khi và chỉ khi
CA = CB \(\Leftrightarrow\) CA2 = CB2
\(\Leftrightarrow\) (3+ 2y + 1)2 + (- 1- y)2 = (- 1+ 2y + 1)2 + (- 2- y)2
\(\Leftrightarrow\) (4 + 2y)2 + (1 + y)2 = 4y2 + (2 + y)2
giải ra ta được y = \(\dfrac{-13}{14}\) ; x = \(-2\left(\dfrac{-13}{14}\right)-1=\dfrac{13}{7}-1=\dfrac{6}{7}\)
vậy C có tọa độ là \(\left(\dfrac{6}{7};\dfrac{-13}{14}\right)\)
b) xét điểm M (- 2t - 1 ; t) trên (d) , ta có :
\(\widehat{AMB}\) = 900 \(\Leftrightarrow\) AM2 + BM2 = AB2
\(\Leftrightarrow\) (4 + 2t)2 + (1 + t)2 + 4t2 + (2 + t)2 = 17
\(\Leftrightarrow\) 10t2 +22t + 4 = 0 \(\Leftrightarrow\) 5t2 + 11t + 2 = 0
\(\Leftrightarrow\left\{{}\begin{matrix}t=\dfrac{-1}{5}\\t=-2\end{matrix}\right.\)
vậy có 2 điểm thỏa mãn đề bài là M1\(\left(\dfrac{-3}{5};\dfrac{-1}{5}\right)\) và M2\(\left(3;-2\right)\)
(Trả lời bởi Mysterious Person)
Trong mặt phẳng Oxy cho tam giác ABC có \(AB=AC,\widehat{BAC}=90^0\). Biết \(M\left(1;-1\right)\) là trung điểm cạnh BC và \(G\left(\dfrac{2}{3};0\right)\) là trọng tâm tam giác ABC. Tìm tọa độ các đỉnh A, B, C ?
Thảo luận (1)Hướng dẫn giải
Trong mặt phẳng Oxy cho tam giác ABC, biết đỉnh A(1; 1) và tọa đọ trọng tâm G (1; 2). Cạnh AC và đường trung trục của nó lần lượt có phương trình là \(x+y-2=0\) và \(-x+y-2=0\). Các điểm M và N lần lượt là trung điểm của BC và AC
a) Hãy tìm tọa độ các điểm M và N
b) Viết phương trình hai đường thẳng chứa hai cạnh AB và BC
Thảo luận (2)Hướng dẫn giải
Cho 3 điểm \(A\left(1;2\right);B\left(-3;1\right);C\left(4;-2\right)\)
a) Chứng minh rằng tập hợp các điểm \(M\left(x;y\right)\) thỏa mãn \(MA^2+MB^2=MC^2\) là một đường tròn
b) Tìm tọa độ tâm và bán kính của đường tròn nói trên
Thảo luận (1)Hướng dẫn giảia) \(MA^2+MB^2=MC^2\)
\(\Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} = {\left( {x - 4} \right)^2} + {\left( {y + 2} \right)^2}\)
\(\Leftrightarrow {x^2} + {y^2} + 12x - 10y - 5 = 0\)
\(\Leftrightarrow {\left( {x + 6} \right)^2} + {\left( {y - 5} \right)^2} = 66\)
Vậy tập hợp các điểm M là một đường tròn.
b) Tâm là điểm (-6 ; 5) bán kính bằng \(\sqrt{66}\)
(Trả lời bởi qwerty)
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(x^2+y^2-6x-6y+14=0\)
Tìm điểm M thuộc trục hoành sao cho từ M kẻ được hai tiếp tuyến của (C) mà góc giữa hai tiếp tuyến đó bằng \(60^0\)
Thảo luận (1)Hướng dẫn giảiĐường tròn (C) có tâm I (3 ; 3) và có bán kính
\(R = \sqrt {{a^2} + {b^2} - c} = \sqrt {9 + 9 - 14} = 2\)
Điểm M(x;0) thuộc Ox.
Từ M kẻ hai tiếp tuyến tiếp xúc với (C) tại A và B. Ta có:
\(\widehat {AMB} = {60^ \circ } \Rightarrow \widehat {IMB} = {30^ \circ }\)
\(\Rightarrow IM = {R \over {\sin {{30}^ \circ }}} = 2R = 4\)
\(IM = 4 \Leftrightarrow \sqrt {{{\left( {x - 3} \right)}^2} + 9} = 4\)
\(\Leftrightarrow {x^2} - 6x + 2 = 0\)
\(\Leftrightarrow x = 3 \pm \sqrt 7\)
Vậy có hai điểm M thỏa mãn đề bài, chúng có tọa độ là :
\({M_1}\left( {3 + \sqrt 7 ;0} \right)\) và \({M_2}\left( {3 - \sqrt 7 ;0} \right)\)
(Trả lời bởi qwerty)