Bài 8: Rút gọn biểu thức chứa căn bậc hai

Luyện tập - Bài 66 (SGK trang 34)

Luyện tập - Bài 65 (SGK trang 34)

Bài 83 (Sách bài tập tập 1 - trang 19)

Hướng dẫn giải

a/ \(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}=\dfrac{2\left(\sqrt{7}+5\right)}{-18}-\dfrac{2\left(\sqrt{7}-5\right)}{-18}=\dfrac{-\sqrt{7}-5+\sqrt{7}-5}{9}=\dfrac{-10}{9}\)

--> biểu thức trên là số hữu tỉ (đpcm)

b/ \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\dfrac{\left(\sqrt{7}+\sqrt{5}\right)^2}{2}+\dfrac{\left(\sqrt{7}-\sqrt{5}\right)^2}{2}=\dfrac{24}{2}=12\)

--> biểu thức trên là số hữu tỉ (đpcm)

(Trả lời bởi katherina)
Thảo luận (1)

Bài 80 (Sách bài tập tập 1 - trang 18)

Hướng dẫn giải

a) \(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=-10\sqrt{2}+5.2-\left(18-30\sqrt{2}+25\right)\)

\(=-10\sqrt{2}+10-18+30\sqrt{2}-25\)

\(=20\sqrt{2}-33\)

b) câu b đề sai

(Trả lời bởi Mysterious Person)
Thảo luận (3)

Bài 82 (Sách bài tập tập 1 - trang 18)

Hướng dẫn giải

a)Ta có vế phải trái\(=x^2+x\sqrt{3}+1=x^2+2.\dfrac{\sqrt{3}}{2}x+\left(\dfrac{\sqrt{3}}{2}\right)^2-\left(\dfrac{\sqrt{3}}{2}\right)^2+1\)

\(=\left(x+\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\) =vế phải

b)Ta có \(x^2+x\sqrt{3}+1=\left(x+\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

Vậy giá trị nhỏ nhất của biểu thức \(x^2+x\sqrt{3}+1\)\(\dfrac{1}{4}\) khi \(\left(x+\dfrac{\sqrt{3}}{2}\right)^2=0\Leftrightarrow x=-\dfrac{\sqrt{3}}{2}\)

(Trả lời bởi Nguyễn Yến Nhi)
Thảo luận (1)

Bài 85 (Sách bài tập tập 1 - trang 19)

Bài 87 (Sách bài tập tập 1 - trang 19)

Hướng dẫn giải

Áp dụng bất đẳng thức Cô-si cho hai số không âm, ta có :

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (1)

\(\dfrac{b+c}{2}\ge\sqrt{bc}\) (2)

\(\dfrac{c+a}{2}\ge\sqrt{ca}\) (3)

Cộng từng vế bất đẳng thức (1), (2), (3) ta được :

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Vậy bất đẳng thức đã được chứng minh

Mở rộng cho bốn số a, b, c, d không âm, ta có bất đẳng thức :

\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)

Mở rộng cho năm số a, b, c, d, e không âm, ta có bất đẳng thức : \(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)

(Trả lời bởi Nguyen Thuy Hoa)
Thảo luận (2)

Bài 8.1 Bài tập bổ sung (Sách bài tập tập 1 - trang 20)

Hướng dẫn giải

\(\sqrt{32}=4\sqrt{2};\sqrt{8}=2\sqrt{2}\)

\(\Rightarrow\sqrt{32}x-\left(\sqrt{8}+\sqrt{2}\right)x>\sqrt{2}\)

\(\Leftrightarrow4\sqrt{2}x-\left(2\sqrt{2}+\sqrt{2}\right)x>\sqrt{2}\)

\(\Leftrightarrow4\sqrt{2}x-3\sqrt{2}x>\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}x>\sqrt{2}\)

vậy câu D) đúng

(Trả lời bởi Hiếu Cao Huy)
Thảo luận (1)

Bài 86 (Sách bài tập tập 1 - trang 19)

Bài 81 (Sách bài tập tập 1 - trang 18)

Hướng dẫn giải

đk : \(a\ge0;b\ge0;a\ne b\)

a) \(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

= \(\dfrac{a+2\sqrt{ab}+b+a-2\sqrt{ab}+b}{a-b}\) = \(\dfrac{2\left(a+b\right)}{a-b}\)

b) đk : \(a\ge0;b\ge0;a\ne b\)

\(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)

= \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

= \(\dfrac{\sqrt{a}+\sqrt{b}}{1}-\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(a+\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}\)

= \(\dfrac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\) = \(\dfrac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{a+b}\)

(Trả lời bởi Mysterious Person)
Thảo luận (1)