Bài 4. Phép nhân đa thức

Mở đầu (SGK Kết nối tri thức với cuộc sống - Trang 19)

Hướng dẫn giải

phép nhân đó được thực hiện bằng cách lấy từng hạng tử của đa thức M nhân với từng hạng tử của đa thức N rồi sau đó cộng tổng lại với nhau và ra kết quả

Kết quả chắc chắn sẽ là một đa thức

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Luyện tập 1 (SGK Kết nối tri thức với cuộc sống - Trang 19)

Hướng dẫn giải

`a, 3x^2 . 2x^3 = 6 .x^(2+3) = 6.x^5`

`b, -xy . 4z^3 = -4xyz^3`.

`c, 6xy^3 . (-0,5)x^2 = -3 . x^3y^3`.

(Trả lời bởi Vui lòng để tên hiển thị)
Thảo luận (2)

Hoạt động 1 (SGK Kết nối tri thức với cuộc sống - Trang 20)

Hướng dẫn giải

\(\begin{array}{l}\left( {5{x^2}} \right).\left( {3{x^2} - x - 4} \right)\\ = 5{x^2}.3{x^2} - 5{x^2}.x - 5{x^2}.4\\ = 15{x^4} - 5{x^3} - 20{x^2}\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Kết nối tri thức với cuộc sống - Trang 20)

Hướng dẫn giải

\(\begin{array}{l}\left( {5{x^2}y} \right).\left( {3{x^2}y - xy - 4y} \right)\\ = 5{x^2}y.3{x^2}y - 5{x^2}y.xy - 5{x^2}y.4y\\ = 15{x^4}{y^2} - 5{x^3}{y^2} - 20{x^2}{y^2}\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 2 (SGK Kết nối tri thức với cuộc sống - Trang 20)

Hướng dẫn giải

a)

\(\begin{array}{l}\left( {xy} \right).\left( {{x^2} + xy - {y^2}} \right)\\ = xy.{x^2} + xy.xy - xy.{y^2}\\ = {x^3}y + {x^2}{y^2} - x{y^3}\end{array}\)

b)

\(\begin{array}{l}\left( {xy + yz + zx} \right).\left( { - xyz} \right)\\ = xy.\left( { - xyz} \right) + yz.\left( { - xyz} \right) + zx.\left( { - xyz} \right)\\ =  - {x^2}{y^2}z - x{y^2}{z^2} - {x^2}y{z^2}\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng (SGK Kết nối tri thức với cuộc sống - Trang 20)

Hướng dẫn giải

\(\begin{array}{l}{x^3}\left( {x + y} \right) - x\left( {{x^3} + {y^3}} \right)\\ = {x^3}.x + {x^3}.y - \left( {x.{x^3} + x.{y^3}} \right)\\ = {x^4} + {x^3}y - {x^4} - x{y^3}\\ = \left( {{x^4} - {x^4}} \right) + {x^3}y - x{y^3}\\ = {x^3}y - x{y^3}\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 3 (SGK Kết nối tri thức với cuộc sống - Trang 20)

Hướng dẫn giải

\(\begin{array}{l}\left( {2x + 3} \right).\left( {{x^2} - 5x + 4} \right)\\ = 2x.\left( {{x^2} - 5x + 4} \right) + 3.\left( {{x^2} - 5x + 4} \right)\\ = 2x.{x^2} - 2x.5x + 2x.4 + 3{x^2} - 3.5x + 3.4\\ = 2{x^3} - 10{x^2} + 8x + 3{x^2} - 15x + 12\\ = 2{x^3} + \left( { - 10{x^2} + 3{x^2}} \right) + \left( {8x - 15x} \right) + 12\\ = 2{x^3} - 7{x^2} - 7x + 12\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 4 (SGK Kết nối tri thức với cuộc sống - Trang 20)

Hướng dẫn giải

\(\left(2x+3y\right)\left(x^2-5xy+4y^2\right)=2x^3-10x^2y+8xy^2+3x^2y-15xy^2+12y^3=2x^3+12y^3-7x^2y-7xy^2.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 3 (SGK Kết nối tri thức với cuộc sống - Trang 21)

Hướng dẫn giải

a)

\(\begin{array}{l}\left( {2x + y} \right)\left( {4{x^2} - 2xy + {y^2}} \right)\\ = 2x.4{x^2} - 2x.2xy + 2x.{y^2} + y.4{x^2} - y.2xy + y.{y^2}\\ = 8{x^3} - 4{x^2}y + 2x{y^2} + 4{x^2}y - 2x{y^2} + {y^3}\\ = 8{x^3} + \left( { - 4{x^2}y + 4{x^2}y} \right) + \left( {2x{y^2} - 2x{y^2}} \right) + {y^3}\\ = 8{x^3} + {y^3}\end{array}\)

b)

\(\begin{array}{l}\left( {{x^2}{y^2} - 3} \right)\left( {3 + {x^2}{y^2}} \right)\\ = {x^2}{y^2}.3 + {x^2}{y^2}.{x^2}{y^2} - 3.3 - 3.{x^2}{y^2}\\ = 3{x^2}{y^2} + {x^4}{y^4} - 9 - 3{x^2}{y^2}\\ = {x^4}{y^4} + \left( {3{x^2}{y^2} - 3{x^2}{y^2}} \right) - 9\\ = {x^4}{y^4} - 9\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thử thách nhỏ (SGK Kết nối tri thức với cuộc sống - Trang 21)

Hướng dẫn giải

a)

\(\begin{array}{l}P = \left( {2k - 3} \right)\left( {3m - 2} \right) - \left( {3k - 2} \right)\left( {2m - 3} \right)\\ = 2k.3m - 2k.2 - 3.3m + 3.2 - \left( {3k.2m - 3k.3 - 2.2m + 2.3} \right)\\ = 6km - 4k - 9m + 6 - 6km + 9k + 4m - 6\\ = \left( {6km - 6km} \right) + \left( { - 4k + 9k} \right) + \left( { - 9m + 4m} \right) + \left( {6 - 6} \right)\\ = 5k - 5m\end{array}\)

b)

Ta có: \(P = 5k - 5m = 5.\left( {k - m} \right)\)

Vì \(5 \vdots 5\) và k, m nguyên nên P chia hết cho 5.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)