Bài tập cuối chương V

Bài 1 trang 25 (SGK Cánh Diều)

Hướng dẫn giải

a: Chọn B

b: Chọn D

c: Chọn C

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (2)

Bài 2 trang 25 (SGK Cánh Diều)

Bài 3 trang 25 (SGK Cánh Diều)

Hướng dẫn giải

a, Bảng tần số ghép nhóm cho mẫu số liệu trên có tám nhóm ứng với tám nửa khoảng:

b, - Trung bình cộng là:

\(\overline{x}=\dfrac{110\cdot4+130\cdot15+150\cdot14+170\cdot5+190\cdot2}{40}=143\)

- Trung vị là: \(M_e=140+\left(\dfrac{20-19}{14}\right)\cdot20\simeq141\)

\(Q_1=120+\left(\dfrac{10-4}{15}\right)\cdot20\simeq128\\ Q_2=M_e\simeq141\\ Q_3=140+\left(\dfrac{30-19}{15}\right)\cdot20=155,6\)

c, Mốt của mẫu số liệu là:

Có nhóm 2 là nhóm có tần số lớn nhất 

\(\Rightarrow M_o=120+\left(\dfrac{15-4}{2\cdot15-4-14}\right)\cdot20\simeq138,3\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4 trang 25 (SGK Cánh Diều)

Hướng dẫn giải

Xét 2 biến cố:

D: “Bạn Hương được chọn song ca” => P(D) = 0,9

E: “Bạn Dũng được chọn song ca” => P(E) = 0,7

a)     Do \(A = D \cap E \Rightarrow P(A) = P(D).P(E) = 0,7.0,9 = 0,63\)

b)    Ta thấy \(B = E \cup D \Rightarrow P(B) = P(E \cup D) = P(E) + P(D) - P(E \cap D) = 0,7 + 0,9 - 0,63 = 0,97\)

c)     Xét biến cố đối \(\overline D \) của biến cố D. Ta thấy \(P\left( {\overline D } \right) = 1 - P(D) = 1 - 0,9 = 0,1\)

Vì \(C = E \cap \overline D  \Rightarrow P(C) = P(E).P\left( {\overline D } \right) = 0,1.0,7 = 0,07\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 5 trang 25 (SGK Cánh Diều)

Hướng dẫn giải

Xét 2 biến cố: A: “Bạn Mai thi được từ 7 điểm trở lên” và B: “Bạn Thi thi được từ 7 điểm trở lên”

Do \(C = A \cap B \Rightarrow P(C) = P(A).P(B) = 0,8.0,9 = 0,72\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 6 trang 26 (SGK Cánh Diều)

Hướng dẫn giải

-         Số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = 3! = 6\)

-         Gọi B là biến cố “Không lá thư nào được bỏ đúng phong bì”

A là biến cố “Có ít nhất một lá thư được bỏ đúng phong bì”

⇨     n(B) = 2

⇨     \(P(A) = 1 - P(B) = 1 - \frac{2}{6} = \frac{2}{3}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 7 trang 26 (SGK Cánh Diều)

Hướng dẫn giải

-         Số cách lấy ngẫu nhiên 2 quả cầu: \(n\left( \Omega  \right) = C_9^2 = 36\)

-         Số cách lấy 2 quả khác màu là:

+ 1 quả màu xanh và 1 quả màu vàng: \(C_4^1 \times C_3^1 = 12\)

+ 1 quả màu xanh và 1 quả màu đỏ: \(C_4^1 \times C_2^1 = 8\)

+ 1 quả màu đỏ và 1 quả màu vàng: \(C_2^1 \times C_3^1 = 6\)

=> Tổng số cách lấy ra 2 quả khác màu là: 26 cách

-         Số cách lấy 2 quả khác màu trùng số:

+ 2 quả cùng là số 1: \(C_3^2 = 3\)

+ 2 quả cùng là số 2: \(C_3^2 = 3\)

+ 2 quả cùng là số 3: \(C_2^2 = 1\)

=> Tổng số cách lấy ra 2 quả khác màu trùng số là: 7 cách

=> Số cách lấy ra 2 quả khác màu khác số là: 26 – 7 = 19 (cách)

=> Xác suất để lấy ra 2 quả khác màu khác số là: \(P = \frac{{19}}{{36}}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 8 trang 26 (SGK Cánh Diều)

Hướng dẫn giải

-         Cách đặt ngẫu nhiên 4 viên bi vào 9 ô là: \(C_9^4 = 126\)(cách)

-         Số cách đặt 4 viên sao cho hàng nào và cột nào cũng có bi là

+ Trường hợp 1: 2 viên bi sát nhau, 2 viên bi còn lại không sát nhau: \(\left( {\left( {C_4^1 \times 2} \right) + 1 \times 4} \right) \times \left( {2 \times 1 + 1 \times 3} \right) = 60\)

+ Trường hợp 2: 3 viên bi tạo thành 1 đường chéo và không có viên nào sát nhau: 4 (Cách)

+ Trường hợp 3: 4 viên bi tạo thành 1 đường tròn lấy ô chính giữa làm tâm: 1 (cách)

=> Có 65 cách

-         Xác suất để đặt 4 viên bi sao cho hàng nào cột nào cũng có bi là: \(P = \frac{{65}}{{126}}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)